Skip to main content
Atoms interacting with a micro ring resonator

QED with moving atoms

strong light-matter interactions

Cavity quantum electrodynamics (cQED), the interaction of a two-level system with a high quality factor (Q) cavity, is a foundational building block in different architectures for quantum computation, communication, and metrology. The strong interaction between the atom and the cavity enables single-photon operation, which is required for quantum gates and sources. Cold atoms, quantum dots, and color centers in crystals are among the systems that have shown single-photon operations, but they require significant physical infrastructure. Atomic vapors, on the other hand, require limited experimental infrastructure and are hence much easier to deploy outside a laboratory, but they consist of an ensemble of moving atoms that results in short interaction times involving multiple atoms, which can hamper quantum operations. A solution to this issue can be found in nanophotonic cavities, where the optical mode is confined to a small volume and light-matter interaction is enhanced, so that fast single-atom, single-photon operations are enabled.

reading material:https://opg.optica.org/optica/fulltext.cfm?uri=optica-11-10-1376