Skip to main content

Publications

2025

Refaely, O., Bogdanov Berezovsky, M., Bruck, S., Meir, S., Tamir, Y., Duadi, H., & Fridman, M. (2025). Temporal chirpless near-field microscope. Optics and Laser Technology, 192, Article 113912. https://doi.org/10.1016/j.optlastec.2025.113912
Meir, S., Duadi, H., Refaely, O., Tamir, Y., & Fridman, M. (2025). High-order autocorrelation by a cascade time-lens. Optics Letters, 50(15), 4782-4785. https://doi.org/10.1364/ol.567318
Shniderman, E., Wertsman, M., Granot, H., Duadi, H., & Fridman, M. (2025). Tempo oscillations in rhythmic human networks. Scientific Reports, 15(1), Article 22231. https://doi.org/10.1038/s41598-025-97438-w
Fridman, M., & Cohen, E. (2025). Quantum temporal optics. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications X Article 1334803 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 13348). SPIE. https://doi.org/10.1117/12.3047779
Meir, S., Duadi, H., Tamir, Y., & Fridman, M. (2025). Cascade time-lens. Optics and Laser Technology, 187, Article 112745. https://doi.org/10.1016/j.optlastec.2025.112745

2024

Shniderman, E., Avraham, Y., Shahal, S., Duadi, H., Davidson, N., & Fridman, M. (2024). How synchronized human networks escape local minima. Nature Communications, 15(1), Article 9298. https://doi.org/10.1038/s41467-024-53540-7
Tamir, Y., Meir, S., Duadi, H., & Fridman, M. (2024). Spatio-Temporal Dynamics of Pulses in Multimode Fibers. Photonics, 11(7), Article 591. https://doi.org/10.3390/photonics11070591
Fridman, M. (2024). Quantum temporal optics devices. In J. Scheuer, & S. M. Shahriar (Eds.), Quantum Sensing, Imaging, and Precision Metrology II Article 129120M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 12912). SPIE. https://doi.org/10.1117/12.3011726
Fridman, M., & Cohen, E. (2024). Quantum temporal optics. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IX Article 1287002 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 12870). SPIE. https://doi.org/10.1117/12.3005761

2023

Meir, S., Tamir, Y., Duadi, H., Cohen, E., & Fridman, M. (2023). Ultrafast Temporal SU(1,1) Interferometer. Physical Review Letters, 130(25), Article 253601. https://doi.org/10.1103/physrevlett.130.253601

2022

Klein, A., & Fridman, M. (2022). Simulating the polarization dynamics of ultrafast solitons. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII Article 1198604 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11986). SPIE. https://doi.org/10.1117/12.2608079
Meir, S., & Fridman, M. (2022). Amplified correlated beams. In M. Betz, & A. Y. Elezzabi (Eds.), Ultrafast Phenomena and Nanophotonics XXVI Article 119990D (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11999). SPIE. https://doi.org/10.1117/12.2608098
Rabi, S., & Fridman, M. (2022). Spectral ghost imaging with a speckle pattern. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX Article 1197604 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11976). SPIE. https://doi.org/10.1117/12.2608096
Rabi, S., Meir, S., Dror, R., Duadi, H., Baldini, F., Chiavaioli, F., & Fridman, M. (2022). Spectral Ghost Imaging for Ultrafast Spectroscopy. IEEE Photonics Journal, 14(1). https://doi.org/10.1109/JPHOT.2021.3138689
Duadi, H., & Fridman, M. (2022). Nonlinear aberrations in time lenses. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII Article 1198607 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11986). SPIE. https://doi.org/10.1117/12.2608089
Meir, S., Klein, A., Duadi, H., Cohen, E., & Fridman, M. (2022). Single-shot analysis of amplified correlated light. Optics Express, 30(2), 1773-1781. https://doi.org/10.1364/OE.445549

2021

Klein, A., Meir, S., Duadi, H., Govindarajan, A., & Fridman, M. (2021). Polarization dynamics of ultrafast solitons. Optics Express, 29(12), 18512-18522. https://doi.org/10.1364/OE.426122
Duadi, H., Klein, A., Sibony, I., Meir, S., & Fridman, M. (2021). Cross-phase modulation aberrations in time lenses. Optics Letters, 46(13), 3255-3258. https://doi.org/10.1364/ol.425859
Pirvandy, O., Fridman, M., & Yaari, G. (2021). Gambling strategies and prize-pricing recommendation in sports multi-bets. Big Data and Cognitive Computing, 5(4), Article 70. https://doi.org/10.3390/bdcc5040070

2020

Klein, A., Sibony, I., Meir, S., Duadi, H., Sander, M. Y., & Fridman, M. (2020). Temporal imaging with a high filling factor. APL Photonics, 5(9), Article 090801. https://doi.org/10.1063/5.0002850
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Time-lenses placed in an array with overlapping between adjacent time-lenses. In N. G. R. Broderick, J. M. Dudley, & A. C. Peacock (Eds.), Nonlinear Optics and its Applications 2020 Article 113581N (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11358). SPIE. https://doi.org/10.1117/12.2557282
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Temporal measurement of the entire electric field of ultrafast input signals. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII Article 1125412 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11254). SPIE. https://doi.org/10.1117/12.2543961
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., Cohen, E., & Fridman, M. (2020). Imaging in time of non-classical ultrafast signals with high temporal resolution. In S. M. Shahriar, & J. Scheuer (Eds.), Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II Article 112960M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11296). SPIE. https://doi.org/10.1117/12.2543957
Shahal, S., Wurzberg, A., Sibony, I., Duadi, H., Weymouth, D., Shniderman, E., Davidson, N., & Fridman, M. (2020). Synchronization of complex human networks. Nature Communications, 11(1), Article 3854. https://doi.org/10.1038/s41467-020-17540-7
Asraf, S., Fridman, M., & Zalevsky, Z. (2020). Fibers-based temporal super-resolved imaging. Scientific Reports, 10(1), Article 17750. https://doi.org/10.1038/s41598-020-74879-z
Klein, A., Duadi, H., & Fridman, M. (2020). Ultrafast rogue waves in a vector field. In N. G. R. Broderick, J. M. Dudley, & A. C. Peacock (Eds.), Nonlinear Optics and its Applications 2020 Article 113580R (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11358). SPIE. https://doi.org/10.1117/12.2557271
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Temporal imaging of ultrafast signals in time and space simultaneously. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications V Article 112650M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11265). SPIE. https://doi.org/10.1117/12.2543947
Klein, A., Sibony, I., Meir, S., Freedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Time-lenses placed in an array with overlapping between adjacent time-lenses. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII Article 1125413 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11254). SPIE. https://doi.org/10.1117/12.2543968
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., Sander, M. Y., & Fridman, M. (2020). Temporal imaging system based on four-wave mixing interaction which do not require synchronization to a pump wave. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications V Article 112650L (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11265). SPIE. https://doi.org/10.1117/12.2543945

2019

Klein, A., & Fridman, M. (2019). Temporal imaging of the intensity, phase and state of polarization. In D. R. Solli, S. Bielawski, D. R. Solli, & G. Herink (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IV Article 109030L (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10903). SPIE. https://doi.org/10.1117/12.2507013
Blank, A., Fridman, M., & Linzon, Y. (2019). In-liquid durable sensing with fused microknot optical transmission resonators: Folded versus straight configuration on hydrophilic and hydrophobic substrates. Sensors and Actuators, A: Physical, 288, 21-26. https://doi.org/10.1016/j.sna.2019.01.017
Blank, A., Fridman, M., & Linzon, Y. (2019). Towards Versatile Folded Microfibers: Folded versus Straight Configuration on Hydrophilic and Hydrophobic Substrates. In OMN 2019 - 2019 International Conference on Optical MEMS and Nanophotonics, Proceedings (pp. 112-113). Article 8925282 (International Conference on Optical MEMS and Nanophotonics; Vol. 2019-July). IEEE Computer Society. https://doi.org/10.1109/omn.2019.8925282
Shahal, S., & Fridman, M. (2019). High-order modes micro-knot excited by a long-period fiber grating. In E. M. Goldys, D. Fixler, & D. V. Nicolau (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911I (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2510505
Shahal, S., Duadi, H., & Fridman, M. (2019). Advanced microknot devices. In D. V. Nicolau, E. M. Goldys, & D. Fixler (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108910G (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2507027
Duadi, H., Yaron, T., Klein, A., Meir, S., & Fridman, M. (2019). Phase retrieval by an array of overlapping time-lenses. Optics Letters, 44(4), 799-802. https://doi.org/10.1364/ol.44.000799
Klein, A., Shahal, S., Duadi, H., & Fridman, M. (2019). Full Stokes temporal imaging. In D. V. Nicolau, D. Fixler, & E. M. Goldys (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911B (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2509444
Klein, A., Sibony, I., Meir, S., Shahal, S., Duadi, H., & Fridman, M. (2019). Overlapping Time-Lens Array. IEEE Photonics Journal, 11(3), Article 8720008. https://doi.org/10.1109/JPHOT.2019.2918007
Blank, A., Fridman, M., & Linzon, Y. (2019). Towards versatile folded microfibers: Folded versus straight Configuration on Hydrophilic and Hydrophobic Substrates. In Fourier Transform Spectroscopy - Proceedings Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors) (Fourier Transform Spectroscopy - Proceedings Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)). Optical Society of America (OSA). https://doi.org/10.1364/fts.2019.jth2a.12
Klein, A., Duadi, H., & Fridman, M. (2019). Ultrafast rogue waves in a vector field. In D. R. Solli, G. Herink, S. Bielawski, & D. R. Solli (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IV Article 109030D (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10903). SPIE. https://doi.org/10.1117/12.2506994
Klein, A., Shahal, S., Meir, S., Duadi, H., Sulimany, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2019). Ultrafast twin-peak rogue waves in a vector field. OSA Continuum, 2(11), 3102-3106. https://doi.org/10.1364/OSAC.2.003102
Duadi, H., Yaron, T., Klein, A., & Fridman, M. (2019). Multiple plane phase retrieval from temporal lens array. In E. M. Goldys, D. Fixler, & D. V. Nicolau (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911C (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2509541

2018

Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2018). Cloaking data in optical networks. In K. Tsukamoto, B. B. Dingel, & S. Mikroulis (Eds.), Broadband Access Communication Technologies XII Article 1055906 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10559). SPIE. https://doi.org/10.1117/12.2286774
Fridman, M. (2018). The picoseconds structure of ultrafast rogue waves. In CLEO: Science and Innovations, CLEO_SI 2018 (Optics InfoBase Conference Papers; Vol. Part F94-CLEO_SI 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_si.2018.sw4n.6
Logvinova, A., Shahal, S., Fridman, M., & Linzon, Y. (2018). Fused microknot optical resonators in folded photonic tapers for in-liquid durable sensing. Sensors, 18(5), Article 1352. https://doi.org/10.3390/s18051352
Fridman, M. (2018). Off-resonance long-period fiber gratings and spin-optics response. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8426986 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Fridman, M. (2018). Off-resonance long-period fiber gratings and spin-optics response. In CLEO: Applications and Technology, CLEO_AT 2018 (Optics InfoBase Conference Papers; Vol. Part F92-CLEO_AT 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_at.2018.jth2a.137
Klein, A., Shahal, S., Masri, G., Duadi, H., Sulimani, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2018). The picosecond structure of ultra-fast rogue waves. In D. R. Solli, D. R. Solli, B. Jalali, & G. Steinmeyer (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications III Article 1051704 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10517). SPIE. https://doi.org/10.1117/12.2285987
Shahal, S., Duadi, H., Linzon, Y., & Fridman, M. (2018). Complex fiber micro-knots. Sensors, 18(4), Article 1273. https://doi.org/10.3390/s18041273
Sulimany, K., Lib, O., Masri, G., Klein, A., Fridman, M., Grelu, P., Gat, O., & Steinberg, H. (2018). Bidirectional Soliton Rain Dynamics Induced by Casimir-Like Interactions in a Graphene Mode-Locked Fiber Laser. Physical Review Letters, 121(13), Article 133902. https://doi.org/10.1103/PhysRevLett.121.133902
Fridman, M. (2018). Temporal imaging in three dimensions. In CLEO: Science and Innovations, CLEO_SI 2018 (Optics InfoBase Conference Papers; Vol. Part F94-CLEO_SI 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_si.2018.sth3n.5
Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2018). Temporal depth imaging. In D. V. Nicolau, A. N. Cartwright, & D. Fixler (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV Article 1050604 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10506). SPIE. https://doi.org/10.1117/12.2287410
Fridman, M. (2018). The Picoseconds Structure of Ultrafast Rogue Waves. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8428153 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Shahal, S., Darchevits, B., Klein, A., Masri, G., Duadi, H., & Fridman, M. (2018). Complex fiber micro-knots. In G. von Freymann, R. C. Rumpf, & W. V. Schoenfeld (Eds.), Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI Article 105441A (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10544). SPIE. https://doi.org/10.1117/12.2286767
Klein, A. V. I., Masri, G., Duadi, H., Sulimany, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2018). Ultrafast rogue wave patterns in fiber lasers. Optica, 5(7), 774-778. https://doi.org/10.1364/OPTICA.5.000774
Fridman, M. (2018). The picoseconds structure of ultrafast rogue waves. In Nonlinear Photonics, NP 2018 (Optics InfoBase Conference Papers; Vol. Part F108-NP 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/np.2018.npth2c.7
Yaron, T., Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2018). Temporal super resolution based on phase retrieval algorithm with a time-lens. In D. V. Nicolau, A. N. Cartwright, & D. Fixler (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV Article 1050605 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10506). SPIE. https://doi.org/10.1117/12.2287424
Klein, A., Shahal, S., Duadi, H., Masri, G., & Fridman, M. (2018). Temporal Encryption at 1 Tb/s. Journal of Lightwave Technology, 36(12), 2344-2350. https://doi.org/10.1109/jlt.2018.2809742
Fridman, M. (2018). Temporal Super-Resolution. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8427012 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Chiavaioli, F., Trono, C., Baldini, F., Klein, A., Fridman, M., & Bromberg, Y. (2018). Random long period fiber gratings: Spectral features and perspectives. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials, BGPPM 2018 (Optics InfoBase Conference Papers; Vol. Part F98-BGPPM 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/bgppm.2018.bth3a.5
Klein, A., Duadi, H., & Fridman, M. (2018). Full-Stokes temporal imaging. Optics Letters, 43(8), 1651-1653. https://doi.org/10.1364/ol.43.001651
Fridman, M. (2018). Temporal Imaging in Three Dimensions. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8427866 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Fridman, M. (2018). Temporal super-resolution. In CLEO: Applications and Technology, CLEO_AT 2018 (Optics InfoBase Conference Papers; Vol. Part F92-CLEO_AT 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_at.2018.jth2a.163

2017

Yaron, T., Klein, A., Duadi, H., & Fridman, M. (2017). Temporal superresolution based on a localization microscopy algorithm. Applied Optics, 56(9), D24-D28. https://doi.org/10.1364/ao.56.000d24
Shahal, S., Duadi, H., & Fridman, M. (2017). High-order modes micro-knot excited by a long-period fiber grating. Sensors, 17(11), Article 2490. https://doi.org/10.3390/s17112490
Shahal, S., Linzon, Y., & Fridman, M. (2017). Fused micro-knots. In D. V. Nicolau, D. Fixler, & A. N. Cartwright (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV Article 100771B (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10077). SPIE. https://doi.org/10.1117/12.2249578
Logvinova, A., Gottlieb, G., Shahal, S., Fridman, M., & Linzon, Y. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. In 2017 International Conference on Optical MEMS and Nanophotonics, OMN 2017 - Proceedings Article 8051479 (International Conference on Optical MEMS and Nanophotonics). IEEE Computer Society. https://doi.org/10.1109/omn.2017.8051479
Logvinova, A., Gottlieb, G., Linzon, Y., Shahal, S., & Fridman, M. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. In MWP 2017 - 2017 International Topical Meeting on Microwave Photonics (pp. 1-4). (MWP 2017 - 2017 International Topical Meeting on Microwave Photonics; Vol. 2017-December). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/mwp.2017.8168734
Klein, A., Yaron, T., Preter, E., Duadi, H., & Fridman, M. (2017). Temporal depth imaging. Optica, 4(5), 502-506. https://doi.org/10.1364/OPTICA.4.000502
Shahal, S., Klein, A., Masri, G., Duadi, H., & Fridman, M. (2017). Long period fiber gratings with off-resonance spectral response based on mechanical oscillations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 34(2), 264-269. https://doi.org/10.1364/josaa.34.000264
Logvinova, A., Gottlieb, G., Shahal, S., Fridman, M., & Linzon, Y. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. Applied Optics, 56(20), 5726-5730. https://doi.org/10.1364/ao.56.005726
Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2017). Four Wave Mixing-Based Time Lens for Orthogonal Polarized Input Signals. IEEE Photonics Journal, 9(2), Article 7894243. https://doi.org/10.1109/JPHOT.2017.2690899
Shahal, S., Klein, A., Masri, G., & Fridman, M. (2017). Off resonance long period fiber gratings for optical detection. In D. V. Nicolau, D. Fixler, & A. N. Cartwright (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV Article 100770W (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10077). SPIE. https://doi.org/10.1117/12.2249560

2016

Masri, G., Shahal, S., Klein, A., Duadi, H., & Fridman, M. (2016). Polarization dependence of asymmetric off-resonance long period fiber gratings. Optics Express, 24(26), 29843-29851. https://doi.org/10.1364/OE.24.029843
Fridman, M. (2016). Temporal lens array. In Imaging Systems and Applications, IS 2016 (Optics InfoBase Conference Papers). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/ISA.2016.IT1F.5
Feder, I., Duadi, H., Fridman, M., Dreifuss, T., & Fixler, D. (2016). Experimentally testing the role of blood vessels in the full scattering profile: solid phantom measurements, Journal of Biomedical Photonics \& Engineering, 2(4,).
Shahal, S., Klein, A., Masri, G., & Fridman, M. (2016). Fused fiber micro-knots. Applied Optics, 55(17), 4538-4541. https://doi.org/10.1364/ao.55.004538

2015

Fridman, M. (2015). Polarization rotator with topological insulators.
Fridman, M., Okawachi, Y., Clemmen, S., Ménard, M., Lipson, M., & Gaeta, A. L. (2015). Waveguide-based single-shot temporal cross-correlator. Journal of Optics (United Kingdom), 17(3), Article 035501. https://doi.org/10.1088/2040-8978/17/3/035501

2014

Fridman, M., & Raz, O. (2014). Phase Retrieval with an Array of Coupled Lasers. In CLEO: QELS_Fundamental Science, CLEO_QELS 2014 (Optics InfoBase Conference Papers). Optical Society of American (OSA).
Fridman, M., & Raz, O. (2014). Phase retrieval with an array of coupled lasers. In CLEO: Science and Innovations, CLEO_SI 2014 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/cleo_at.2014.jth2a.79

2013

Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2013). Coherent combining and phase locking of fiber lasers. In Coherent Laser Beam Combining (pp. 371-400). Wiley-VCH Verlag. https://doi.org/10.1002/9783527652778.ch12
Fridman, M. (2013). Multistage accelerating beams in time.
Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2013). Coherent Combining and Phase Locking of Fiber Lasers. In M. Fridman (Ed.), Coherent Laser Beam Combining (pp. 371-400). Wiley Online Library.
Farsi, A., Fridman, M., & Gaeta, A. L. (2013). Accelerating pulses via multistage four-wave-mixing. In CLEO: Science and Innovations, CLEO_SI 2013 (pp. CM3L.1). (CLEO: Science and Innovations, CLEO_SI 2013).
Farsi, A., Fridman, M., & Gaeta, A. L. (2013). Accelerating pulses via multistage four-wave-mixing. In 2013 Conference on Lasers and Electro-Optics, CLEO 2013 Article 6833243 (2013 Conference on Lasers and Electro-Optics, CLEO 2013). IEEE Computer Society. https://doi.org/10.1364/cleo_si.2013.cm3l.1

2012

Fridman, M., Okawachi, Y., Clemmen, S., Menard, M., Lipson, M., & Gaeta, A. L. (2012). Optical cross correlator in a silicon waveguide. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6325507 (2012 Conference on Lasers and Electro-Optics, CLEO 2012).
Nixon, M., Fridman, M., Ronen, E., Sacks, Z., Davidson, N., & Friesem, A. A. (2012). Recent developments in passive phase locking and coherent combining of lasers. In Laser Technology for Defense and Security VIII Article 83810N (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8381). https://doi.org/10.1117/12.920190
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. Nature, 481(7379), 62-65. https://doi.org/10.1038/nature10695
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. In Quantum Electronics and Laser Science Conference, QELS 2012 (Optics InfoBase Conference Papers).
Arnon, S., & Fridman, M. (2012). Data center switch based on temporal cloaking. Journal of Lightwave Technology, 30(21), 3427-3433. Article 6316039. https://doi.org/10.1109/jlt.2012.2220895
Fridman, M., Okawachi, Y., Clemmen, S., Menard, M., Lipson, M., & Gaeta, A. L. (2012). Optical cross correlator in a silicon waveguide. In CLEO: Science and Innovations, CLEO_SI 2012 (pp. CF2L.2). (CLEO: Science and Innovations, CLEO_SI 2012). Optical Society of America (OSA). https://doi.org/10.1364/cleo_si.2012.cf2l.2
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6327143 (2012 Conference on Lasers and Electro-Optics, CLEO 2012). IEEE Computer Society. https://doi.org/10.1364/qels.2012.qw1e.1
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., Davidson, N., & Kanter, I. (2012). Controlling synchronization in large laser networks. Physical Review Letters, 108(21), Article 214101. https://doi.org/10.1103/PhysRevLett.108.214101
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. Optics InfoBase Conference Papers.
Fridman, M., Pugatch, R., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers. Physical Review E, 85(2), Article 020101. https://doi.org/10.1103/PhysRevE.85.020101
Fridman, M., Suchowski, H., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Modal dynamics in multimode fibers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 29(4), 541-544. https://doi.org/10.1364/josaa.29.000541
Fridman, M., Pugatch, R., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Phase-locking-level statistics of coupled random fiber lasers. Physical Review E, 86(4), Article 041142. https://doi.org/10.1103/physreve.86.041142
Fridman, M. (2012). Demonstration of temporal cloaking.
Davidson, N., Nixon, M., Ronen, E., Fridman, M., & Friesem, A. A. (2012). Phase locking large arrays of lasers. In CLEO: Science and Innovations, CLEO_SI 2012 (pp. CTu3N.7). (CLEO: Science and Innovations, CLEO_SI 2012). Optical Society of America (OSA). https://doi.org/10.1364/cleo_si.2012.ctu3n.7
Wen, Y. H., Kuzucu, O., Fridman, M., Gaeta, A. L., Luo, L. W., & Lipson, M. (2012). All-optical control of an individual resonance in a silicon microresonator. Physical Review Letters, 108(22), Article 223907. https://doi.org/10.1103/physrevlett.108.223907
Davidson, N., Nixon, M., Ronen, E., Fridman, M., & Friesem, A. A. (2012). Phase locking large arrays of lasers. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6326151 (2012 Conference on Lasers and Electro-Optics, CLEO 2012).

2011

Nixon, M., Ronen, E., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Phase locking large arrays of lasers via a single degenerate cavity. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fwr6
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., Davidson, N., & Kanter, I. (2011). Synchronized cluster formation in coupled laser networks. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fwx4
Nixon, M., Ronen, E., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Phase locking thousands of laser. In Advanced Solid-State Photonics, ASSP 2011 (Optics InfoBase Conference Papers).
Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Enhanced coherence of weakly coupled lasers. Optics Letters, 36(8), 1320-1322. https://doi.org/10.1364/ol.36.001320
Fridman, M., Nixon, M., Dubinskii, M., Friesem, A. A., & Davidson, N. (2011). Principal modes in fiber amplifiers. Optics Letters, 36(3), 388-390. https://doi.org/10.1364/OL.36.000388
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2011). Demonstration of temporal cloaking. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fmi3
Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Fiber amplifiers of radially or azimuthally polarized light. In Fiber Laser Applications, FILAS 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/filas.2011.ftha4
Nixon, M., Fridman, M., Pugatch, R., Friesem, A. A., & Davidson, N. (2011). Phase locking fluctuations of 25 coupled fiber lasers. In 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 Article 5943173 (2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011). https://doi.org/10.1109/cleoe.2011.5943173
Fridman, M., Grinvald, E., Godel, A., Nixon, M., Friesem, A. A., & Davidson, N. (2011). Real time achromatic measurement of space-variant polarizations. Applied Physics Letters, 98(14), Article 141107. https://doi.org/10.1063/1.3575567
Nixon, M., Fridman, M., Pugatch, R., Davidson, N., & Friesem, A. A. (2011). Phase locking fluctuations of 25 coupled fiber lasers. In Fiber Laser Applications, FILAS 2011 (Optics InfoBase Conference Papers).
Fridman, M., Nixon, M., Friesem, A. A., & Davidson, N. (2011). Fiber amplifiers of radially or azimuthally polarized light. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers).

2010

Fridman, M., Nixon, M., Ronen, E., Friesem, A. A., & Davidson, N. (2010). Phase locking of two coupled lasers with many longitudinal modes. Optics Letters, 35(4), 526-528. https://doi.org/10.1364/OL.35.000526
Nixon, M., Fridman, M., Davidson, N., & Friesem, A. A. (2010). Enhanced coherence of weakly coupled lasers due to amplitude nonlinear dynamics. In Quantum Electronics and Laser Science Conference, QELS 2010 (Optics InfoBase Conference Papers).
Eckhouse, V., Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2010). Synchronization of chaotic fiber lasers with reduced external coupling. IEEE Journal of Quantum Electronics, 46(12), 1821-1826. Article 5638360. https://doi.org/10.1109/jqe.2010.2047095
Fridman, M., Nixon, M., Dubinskii, M., Friesem, A. A., & Davidson, N. (2010). Fiber amplification of radially and azimuthally polarized laser light. Optics Letters, 35(9), 1332-1334. https://doi.org/10.1364/OL.35.001332
Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2010). Passive phase locking of 25 fiber lasers. Optics Letters, 35(9), 1434-1436. https://doi.org/10.1364/ol.35.001434
Fridman, M., Nixon, M., Grinvald, E., Davidson, N., & Friesem, A. A. (2010). Real-time measurement of space-variant polarizations. Optics Express, 18(10), 10805-10812. https://doi.org/10.1364/OE.18.010805
Nixon, M., Fridman, M., Davidson, N., & Friesem, A. A. (2010). Enhanced coherence of weakly coupled lasers due to amplitude nonlinear dynamics. In Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 Article 5500774 (Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010). Association for Computing Machinery. https://doi.org/10.1364/qels.2010.jtud12

2009

Fridman, M. (2009). Fiber Lasers with Increase Output Brightness.
Fridman, M., Eckhouse, V., Nixon, M., Davidson, N., & Friesem, A. A. (2009). Fiber lasers with increased output brightness. In The European Conference on Lasers and Electro-Optics, CLEO_Europe 2009 (Optics InfoBase Conference Papers). Optical Society of America.
Fridman, M., Eckhouse, V., Nixon, M., Davidson, N., & Friesem, A. A. (2009). Fiber lasers with increased output brightness. In CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference Article 5192796 (CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference). https://doi.org/10.1109/cleoe-eqec.2009.5192796
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2009). Phase locking and coherent combining of high-order-mode fiber lasers. In 35th European Conference on Optical Communication, ECOC 2009 - Proceedings Article 5287189 (European Conference on Optical Communication, ECOC).
Arane, T., Musalem, A. K. R., & Fridman, M. (2009). Coupling between two singing wineglasses. American Journal of Physics, 77(11), 1066-1067. https://doi.org/10.1119/1.3119175
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., & Davidson, N. (2009). Phase locking of two fiber lasers with time-delayed coupling. Optics Letters, 34(12), 1864-1866. https://doi.org/10.1364/ol.34.001864

2008

Fridman, M., MacHavariani, G., Davidson, N., & Friesem, A. A. (2008). Fiber lasers generating radially and azimuthally polarized light. Applied Physics Letters, 93(19), Article 191104. https://doi.org/10.1063/1.3023072
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2008). Phase locking and coherent combining of high-order-mode fiber lasers. Optics Letters, 33(18), 2134-2136. https://doi.org/10.1364/ol.33.002134
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2008). Simultaneous coherent and spectral addition of fiber lasers. Optics Letters, 33(7), 648-650. https://doi.org/10.1364/ol.33.000648
Fridman, M. (2008). Enhancing Synchronization of Chaotic Fiber Lasers.
Fridman, M. (2008). Passive coherent addition of lasers using planar interferometric combiners.
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2008). Loss enhanced phase locking in coupled oscillators. Physical Review Letters, 100(2), Article 024102. https://doi.org/10.1103/physrevlett.100.024102
Fridman, M., Eckhouse, V., Luria, E., Krupkin, V., Davidson, N., & Friesem, A. A. (2008). Coherent addition of two dimensional array of fiber lasers. Optics Communications, 281(24), 6091-6093. https://doi.org/10.1016/j.optcom.2008.09.065
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2008). Effect of quantum noise on coupled laser oscillators. Physical Review A - Atomic, Molecular, and Optical Physics, 77(6), Article 061803. https://doi.org/10.1103/physreva.77.061803
Ronen, E., Fridman, M., Nixon, M., Friesem, A. A., & Davidson, N. (2008). Phase locking of lasers with intracavity polarization elements. Optics Letters, 33(20), 2305-2307. https://doi.org/10.1364/ol.33.002305

2007

Fridman, M. (2007). Quantum noise in coupled lasers.
Fridman, M. (2007). Passive coherent addition of several eye-safe fiber lasers.
Fridman, M. (2007). Coherent combining of lasers.
Fridman, M. (2007). Taming lasers: mode selection and coherent addition.
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2007). Efficient coherent addition of fiber lasers in free space. Optics Letters, 32(7), 790-792. https://doi.org/10.1364/ol.32.000790
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2007). Recent developments on coupled fiber lasers. In Frontiers in Optics, FiO 2007 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2007.fwb4