Publications
2025
Refaely, O., Bogdanov Berezovsky, M., Bruck, S., Meir, S., Tamir, Y., Duadi, H., & Fridman, M. (2025). Temporal chirpless near-field microscope. Optics and Laser Technology, 192, Article 113912. https://doi.org/10.1016/j.optlastec.2025.113912
Meir, S., Duadi, H., Refaely, O., Tamir, Y., & Fridman, M. (2025). High-order autocorrelation by a cascade time-lens. Optics Letters, 50(15), 4782-4785. https://doi.org/10.1364/ol.567318
Fridman, M., & Cohen, E. (2025). Quantum temporal optics. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications X Article 1334803 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 13348). SPIE. https://doi.org/10.1117/12.3047779
Shniderman, E., Wertsman, M., Granot, H., Duadi, H., & Fridman, M. (2025). Tempo oscillations in rhythmic human networks. Scientific Reports, 15(1), Article 22231. https://doi.org/10.1038/s41598-025-97438-w
Meir, S., Duadi, H., Tamir, Y., & Fridman, M. (2025). Cascade time-lens. Optics and Laser Technology, 187, Article 112745. https://doi.org/10.1016/j.optlastec.2025.112745
2024
Tamir, Y., Meir, S., Duadi, H., & Fridman, M. (2024). Spatio-Temporal Dynamics of Pulses in Multimode Fibers. Photonics, 11(7), Article 591. https://doi.org/10.3390/photonics11070591
Shniderman, E., Avraham, Y., Shahal, S., Duadi, H., Davidson, N., & Fridman, M. (2024). How synchronized human networks escape local minima. Nature Communications, 15(1), Article 9298. https://doi.org/10.1038/s41467-024-53540-7
Fridman, M. (2024). Quantum temporal optics devices. In J. Scheuer, & S. M. Shahriar (Eds.), Quantum Sensing, Imaging, and Precision Metrology II Article 129120M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 12912). SPIE. https://doi.org/10.1117/12.3011726
Fridman, M., & Cohen, E. (2024). Quantum temporal optics. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IX Article 1287002 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 12870). SPIE. https://doi.org/10.1117/12.3005761
2023
Meir, S., Tamir, Y., Duadi, H., Cohen, E., & Fridman, M. (2023). Ultrafast Temporal SU(1,1) Interferometer. Physical Review Letters, 130(25), Article 253601. https://doi.org/10.1103/physrevlett.130.253601
2022
Meir, S., Klein, A., Duadi, H., Cohen, E., & Fridman, M. (2022). Single-shot analysis of amplified correlated light. Optics Express, 30(2), 1773-1781. https://doi.org/10.1364/OE.445549
Duadi, H., & Fridman, M. (2022). Nonlinear aberrations in time lenses. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII Article 1198607 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11986). SPIE. https://doi.org/10.1117/12.2608089
Rabi, S., & Fridman, M. (2022). Spectral ghost imaging with a speckle pattern. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX Article 1197604 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11976). SPIE. https://doi.org/10.1117/12.2608096
Klein, A., & Fridman, M. (2022). Simulating the polarization dynamics of ultrafast solitons. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VII Article 1198604 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11986). SPIE. https://doi.org/10.1117/12.2608079
Meir, S., & Fridman, M. (2022). Amplified correlated beams. In M. Betz, & A. Y. Elezzabi (Eds.), Ultrafast Phenomena and Nanophotonics XXVI Article 119990D (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11999). SPIE. https://doi.org/10.1117/12.2608098
Rabi, S., Meir, S., Dror, R., Duadi, H., Baldini, F., Chiavaioli, F., & Fridman, M. (2022). Spectral Ghost Imaging for Ultrafast Spectroscopy. IEEE Photonics Journal, 14(1). https://doi.org/10.1109/JPHOT.2021.3138689
2021
Pirvandy, O., Fridman, M., & Yaari, G. (2021). Gambling strategies and prize-pricing recommendation in sports multi-bets. Big Data and Cognitive Computing, 5(4), Article 70. https://doi.org/10.3390/bdcc5040070
Klein, A., Meir, S., Duadi, H., Govindarajan, A., & Fridman, M. (2021). Polarization dynamics of ultrafast solitons. Optics Express, 29(12), 18512-18522. https://doi.org/10.1364/OE.426122
Duadi, H., Klein, A., Sibony, I., Meir, S., & Fridman, M. (2021). Cross-phase modulation aberrations in time lenses. Optics Letters, 46(13), 3255-3258. https://doi.org/10.1364/OL.425859
2020
Klein, A., Duadi, H., & Fridman, M. (2020). Ultrafast rogue waves in a vector field. In N. G. R. Broderick, J. M. Dudley, & A. C. Peacock (Eds.), Nonlinear Optics and its Applications 2020 Article 113580R (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11358). SPIE. https://doi.org/10.1117/12.2557271
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Temporal measurement of the entire electric field of ultrafast input signals. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII Article 1125412 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11254). SPIE. https://doi.org/10.1117/12.2543961
Klein, A., Sibony, I., Meir, S., Duadi, H., Sander, M. Y., & Fridman, M. (2020). Temporal imaging with a high filling factor. APL Photonics, 5(9), Article 090801. https://doi.org/10.1063/5.0002850
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., Cohen, E., & Fridman, M. (2020). Imaging in time of non-classical ultrafast signals with high temporal resolution. In S. M. Shahriar, & J. Scheuer (Eds.), Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II Article 112960M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11296). SPIE. https://doi.org/10.1117/12.2543957
Asraf, S., Fridman, M., & Zalevsky, Z. (2020). Fibers-based temporal super-resolved imaging. Scientific Reports, 10(1), Article 17750. https://doi.org/10.1038/s41598-020-74879-z
Klein, A., Sibony, I., Meir, S., Freedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Time-lenses placed in an array with overlapping between adjacent time-lenses. In D. Fixler, E. M. Goldys, & S. Wachsmann-Hogiu (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII Article 1125413 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 11254). SPIE. https://doi.org/10.1117/12.2543968
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Temporal imaging of ultrafast signals in time and space simultaneously. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications V Article 112650M (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11265). SPIE. https://doi.org/10.1117/12.2543947
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., Sander, M. Y., & Fridman, M. (2020). Temporal imaging system based on four-wave mixing interaction which do not require synchronization to a pump wave. In D. R. Solli, G. Herink, & S. Bielawski (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications V Article 112650L (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11265). SPIE. https://doi.org/10.1117/12.2543945
Shahal, S., Wurzberg, A., Sibony, I., Duadi, H., Weymouth, D., Shniderman, E., Davidson, N., & Fridman, M. (2020). Synchronization of complex human networks. Nature Communications, 11(1), Article 3854. https://doi.org/10.1038/s41467-020-17540-7
Klein, A., Sibony, I., Meir, S., Friedman, O., Shahal, S., Duadi, H., & Fridman, M. (2020). Time-lenses placed in an array with overlapping between adjacent time-lenses. In N. G. R. Broderick, J. M. Dudley, & A. C. Peacock (Eds.), Nonlinear Optics and its Applications 2020 Article 113581N (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11358). SPIE. https://doi.org/10.1117/12.2557282
2019
Klein, A., Shahal, S., Duadi, H., & Fridman, M. (2019). Full Stokes temporal imaging. In D. V. Nicolau, D. Fixler, & E. M. Goldys (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911B (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2509444
Shahal, S., & Fridman, M. (2019). High-order modes micro-knot excited by a long-period fiber grating. In E. M. Goldys, D. Fixler, & D. V. Nicolau (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911I (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2510505
Blank, A., Fridman, M., & Linzon, Y. (2019). Towards versatile folded microfibers: Folded versus straight Configuration on Hydrophilic and Hydrophobic Substrates. In Fourier Transform Spectroscopy - Proceedings Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors) (Fourier Transform Spectroscopy - Proceedings Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)). Optical Society of America (OSA). https://doi.org/10.1364/FTS.2019.JTh2A.12
Duadi, H., Yaron, T., Klein, A., Meir, S., & Fridman, M. (2019). Phase retrieval by an array of overlapping time-lenses. Optics Letters, 44(4), 799-802. https://doi.org/10.1364/OL.44.000799
Klein, A., Duadi, H., & Fridman, M. (2019). Ultrafast rogue waves in a vector field. In D. R. Solli, G. Herink, S. Bielawski, & D. R. Solli (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IV Article 109030D (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10903). SPIE. https://doi.org/10.1117/12.2506994
Duadi, H., Yaron, T., Klein, A., & Fridman, M. (2019). Multiple plane phase retrieval from temporal lens array. In E. M. Goldys, D. Fixler, & D. V. Nicolau (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108911C (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2509541
Blank, A., Fridman, M., & Linzon, Y. (2019). Towards Versatile Folded Microfibers: Folded versus Straight Configuration on Hydrophilic and Hydrophobic Substrates. In OMN 2019 - 2019 International Conference on Optical MEMS and Nanophotonics, Proceedings (pp. 112-113). Article 8925282 (International Conference on Optical MEMS and Nanophotonics; Vol. 2019-July). IEEE Computer Society. https://doi.org/10.1109/OMN.2019.8925282
Shahal, S., Duadi, H., & Fridman, M. (2019). Advanced microknot devices. In D. V. Nicolau, E. M. Goldys, & D. Fixler (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI Article 108910G (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10891). SPIE. https://doi.org/10.1117/12.2507027
Blank, A., Fridman, M., & Linzon, Y. (2019). In-liquid durable sensing with fused microknot optical transmission resonators: Folded versus straight configuration on hydrophilic and hydrophobic substrates. Sensors and Actuators, A: Physical, 288, 21-26. https://doi.org/10.1016/j.sna.2019.01.017
Klein, A., Shahal, S., Meir, S., Duadi, H., Sulimany, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2019). Ultrafast twin-peak rogue waves in a vector field. OSA Continuum, 2(11), 3102-3106. https://doi.org/10.1364/OSAC.2.003102
Klein, A., Sibony, I., Meir, S., Shahal, S., Duadi, H., & Fridman, M. (2019). Overlapping Time-Lens Array. IEEE Photonics Journal, 11(3), Article 8720008. https://doi.org/10.1109/JPHOT.2019.2918007
Klein, A., & Fridman, M. (2019). Temporal imaging of the intensity, phase and state of polarization. In D. R. Solli, S. Bielawski, D. R. Solli, & G. Herink (Eds.), Real-time Measurements, Rogue Phenomena, and Single-Shot Applications IV Article 109030L (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10903). SPIE. https://doi.org/10.1117/12.2507013
2018
Sulimany, K., Lib, O., Masri, G., Klein, A., Fridman, M., Grelu, P., Gat, O., & Steinberg, H. (2018). Bidirectional Soliton Rain Dynamics Induced by Casimir-Like Interactions in a Graphene Mode-Locked Fiber Laser. Physical Review Letters, 121(13), Article 133902. https://doi.org/10.1103/PhysRevLett.121.133902
Shahal, S., Duadi, H., Linzon, Y., & Fridman, M. (2018). Complex fiber micro-knots. Sensors, 18(4), Article 1273. https://doi.org/10.3390/s18041273
Fridman, M. (2018). The picoseconds structure of ultrafast rogue waves. In Nonlinear Photonics, NP 2018 (Optics InfoBase Conference Papers; Vol. Part F108-NP 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/NP.2018.NpTh2C.7
Fridman, M. (2018). Off-resonance long-period fiber gratings and spin-optics response. In CLEO: Applications and Technology, CLEO_AT 2018 (Optics InfoBase Conference Papers; Vol. Part F92-CLEO_AT 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_at.2018.jth2a.137
Fridman, M. (2018). The picoseconds structure of ultrafast rogue waves. In CLEO: Science and Innovations, CLEO_SI 2018 (Optics InfoBase Conference Papers; Vol. Part F94-CLEO_SI 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/CLEO_SI.2018.SW4N.6
Fridman, M. (2018). Off-resonance long-period fiber gratings and spin-optics response. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8426986 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Fridman, M. (2018). Temporal super-resolution. In CLEO: Applications and Technology, CLEO_AT 2018 (Optics InfoBase Conference Papers; Vol. Part F92-CLEO_AT 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/cleo_at.2018.jth2a.163
Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2018). Cloaking data in optical networks. In K. Tsukamoto, B. B. Dingel, & S. Mikroulis (Eds.), Broadband Access Communication Technologies XII Article 1055906 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10559). SPIE. https://doi.org/10.1117/12.2286774
Logvinova, A., Shahal, S., Fridman, M., & Linzon, Y. (2018). Fused microknot optical resonators in folded photonic tapers for in-liquid durable sensing. Sensors, 18(5), Article 1352. https://doi.org/10.3390/s18051352
Shahal, S., Darchevits, B., Klein, A., Masri, G., Duadi, H., & Fridman, M. (2018). Complex fiber micro-knots. In G. von Freymann, R. C. Rumpf, & W. V. Schoenfeld (Eds.), Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI Article 105441A (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10544). SPIE. https://doi.org/10.1117/12.2286767
Klein, A., Shahal, S., Masri, G., Duadi, H., Sulimani, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2018). The picosecond structure of ultra-fast rogue waves. In D. R. Solli, D. R. Solli, B. Jalali, & G. Steinmeyer (Eds.), Real-Time Measurements, Rogue Phenomena, and Single-Shot Applications III Article 1051704 (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10517). SPIE. https://doi.org/10.1117/12.2285987
Klein, A. V. I., Masri, G., Duadi, H., Sulimany, K., Lib, O., Steinberg, H., Kolpakov, S. A., & Fridman, M. (2018). Ultrafast rogue wave patterns in fiber lasers. Optica, 5(7), 774-778. https://doi.org/10.1364/OPTICA.5.000774
Fridman, M. (2018). Temporal Imaging in Three Dimensions. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8427866 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
Klein, A., Duadi, H., & Fridman, M. (2018). Full-Stokes temporal imaging. Optics Letters, 43(8), 1651-1653. https://doi.org/10.1364/OL.43.001651
Chiavaioli, F., Trono, C., Baldini, F., Klein, A., Fridman, M., & Bromberg, Y. (2018). Random long period fiber gratings: Spectral features and perspectives. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials, BGPPM 2018 (Optics InfoBase Conference Papers; Vol. Part F98-BGPPM 2018). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/bgppm.2018.bth3a.5
Klein, A., Shahal, S., Duadi, H., Masri, G., & Fridman, M. (2018). Temporal Encryption at 1 Tb/s. Journal of Lightwave Technology, 36(12), 2344-2350. https://doi.org/10.1109/JLT.2018.2809742
Yaron, T., Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2018). Temporal super resolution based on phase retrieval algorithm with a time-lens. In D. V. Nicolau, A. N. Cartwright, & D. Fixler (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV Article 1050605 (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10506). SPIE. https://doi.org/10.1117/12.2287424
Fridman, M. (2018). Temporal Super-Resolution. In 2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings Article 8427012 (2018 Conference on Lasers and Electro-Optics, CLEO 2018 - Proceedings). Institute of Electrical and Electronics Engineers Inc..
2017
Shahal, S., Duadi, H., & Fridman, M. (2017). High-order modes micro-knot excited by a long-period fiber grating. Sensors, 17(11), Article 2490. https://doi.org/10.3390/s17112490
Logvinova, A., Gottlieb, G., Shahal, S., Fridman, M., & Linzon, Y. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. In 2017 International Conference on Optical MEMS and Nanophotonics, OMN 2017 - Proceedings Article 8051479 (International Conference on Optical MEMS and Nanophotonics). IEEE Computer Society. https://doi.org/10.1109/OMN.2017.8051479
Logvinova, A., Gottlieb, G., Linzon, Y., Shahal, S., & Fridman, M. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. In MWP 2017 - 2017 International Topical Meeting on Microwave Photonics (pp. 1-4). (MWP 2017 - 2017 International Topical Meeting on Microwave Photonics; Vol. 2017-December). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/MWP.2017.8168734
Yaron, T., Klein, A., Duadi, H., & Fridman, M. (2017). Temporal superresolution based on a localization microscopy algorithm. Applied Optics, 56(9), D24-D28. https://doi.org/10.1364/AO.56.000D24
Shahal, S., Klein, A., Masri, G., & Fridman, M. (2017). Off resonance long period fiber gratings for optical detection. In D. V. Nicolau, D. Fixler, & A. N. Cartwright (Eds.), Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV Article 100770W (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10077). SPIE. https://doi.org/10.1117/12.2249560
Shahal, S., Klein, A., Masri, G., Duadi, H., & Fridman, M. (2017). Long period fiber gratings with off-resonance spectral response based on mechanical oscillations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 34(2), 264-269. https://doi.org/10.1364/JOSAA.34.000264
Logvinova, A., Gottlieb, G., Shahal, S., Fridman, M., & Linzon, Y. (2017). Dynamical range and stability enhancement in electrically fused microknot optical resonators. Applied Optics, 56(20), 5726-5730. https://doi.org/10.1364/AO.56.005726
Klein, A., Yaron, T., Preter, E., Duadi, H., & Fridman, M. (2017). Temporal depth imaging. Optica, 4(5), 502-506. https://doi.org/10.1364/OPTICA.4.000502
Klein, A., Shahal, S., Masri, G., Duadi, H., & Fridman, M. (2017). Four Wave Mixing-Based Time Lens for Orthogonal Polarized Input Signals. IEEE Photonics Journal, 9(2), Article 7894243. https://doi.org/10.1109/JPHOT.2017.2690899
2016
Fridman, M. (2016). Temporal lens array. In Imaging Systems and Applications, IS 2016 (Optics InfoBase Conference Papers). Optica Publishing Group (formerly OSA). https://doi.org/10.1364/ISA.2016.IT1F.5
Shahal, S., Klein, A., Masri, G., & Fridman, M. (2016). Fused fiber micro-knots. Applied Optics, 55(17), 4538-4541. https://doi.org/10.1364/AO.55.004538
Feder, I., Duadi, H., Fridman, M., Dreifuss, T., & Fixler, D. (2016). Experimentally testing the role of blood vessels in the full scattering profile: solid phantom measurements, Journal of Biomedical Photonics \& Engineering, 2(4,).
Masri, G., Shahal, S., Klein, A., Duadi, H., & Fridman, M. (2016). Polarization dependence of asymmetric off-resonance long period fiber gratings. Optics Express, 24(26), 29843-29851. https://doi.org/10.1364/OE.24.029843
2015
Fridman, M. (2015). Polarization rotator with topological insulators.
Fridman, M., Okawachi, Y., Clemmen, S., Ménard, M., Lipson, M., & Gaeta, A. L. (2015). Waveguide-based single-shot temporal cross-correlator. Journal of Optics (United Kingdom), 17(3), Article 035501. https://doi.org/10.1088/2040-8978/17/3/035501
2014
Fridman, M., & Raz, O. (2014). Phase Retrieval with an Array of Coupled Lasers. In CLEO: QELS_Fundamental Science, CLEO_QELS 2014 (Optics InfoBase Conference Papers). Optical Society of American (OSA).
Fridman, M., & Raz, O. (2014). Phase retrieval with an array of coupled lasers. In CLEO: Science and Innovations, CLEO_SI 2014 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/cleo_at.2014.jth2a.79
2013
Farsi, A., Fridman, M., & Gaeta, A. L. (2013). Accelerating pulses via multistage four-wave-mixing. In 2013 Conference on Lasers and Electro-Optics, CLEO 2013 Article 6833243 (2013 Conference on Lasers and Electro-Optics, CLEO 2013). IEEE Computer Society. https://doi.org/10.1364/cleo_si.2013.cm3l.1
Fridman, M. (2013). Multistage accelerating beams in time.
Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2013). Coherent Combining and Phase Locking of Fiber Lasers. In M. Fridman (Ed.), Coherent Laser Beam Combining (pp. 371-400). Wiley Online Library.
Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2013). Coherent combining and phase locking of fiber lasers. In Coherent Laser Beam Combining (pp. 371-400). Wiley-VCH Verlag. https://doi.org/10.1002/9783527652778.ch12
Farsi, A., Fridman, M., & Gaeta, A. L. (2013). Accelerating pulses via multistage four-wave-mixing. In CLEO: Science and Innovations, CLEO_SI 2013 (pp. CM3L.1). (CLEO: Science and Innovations, CLEO_SI 2013).
2012
Fridman, M., Okawachi, Y., Clemmen, S., Menard, M., Lipson, M., & Gaeta, A. L. (2012). Optical cross correlator in a silicon waveguide. In CLEO: Science and Innovations, CLEO_SI 2012 (pp. CF2L.2). (CLEO: Science and Innovations, CLEO_SI 2012). Optical Society of America (OSA). https://doi.org/10.1364/cleo_si.2012.cf2l.2
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. Nature, 481(7379), 62-65. https://doi.org/10.1038/nature10695
Fridman, M., Pugatch, R., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(2), Article 020101. https://doi.org/10.1103/PhysRevE.85.020101
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., Davidson, N., & Kanter, I. (2012). Controlling synchronization in large laser networks. Physical Review Letters, 108(21), Article 214101. https://doi.org/10.1103/PhysRevLett.108.214101
Fridman, M. (2012). Demonstration of temporal cloaking.
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. In Quantum Electronics and Laser Science Conference, QELS 2012 (Optics InfoBase Conference Papers).
Nixon, M., Fridman, M., Ronen, E., Sacks, Z., Davidson, N., & Friesem, A. A. (2012). Recent developments in passive phase locking and coherent combining of lasers. In Laser Technology for Defense and Security VIII Article 83810N (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8381). https://doi.org/10.1117/12.920190
Arnon, S., & Fridman, M. (2012). Data center switch based on temporal cloaking. Journal of Lightwave Technology, 30(21), 3427-3433. Article 6316039. https://doi.org/10.1109/JLT.2012.2220895
Fridman, M., Okawachi, Y., Clemmen, S., Menard, M., Lipson, M., & Gaeta, A. L. (2012). Optical cross correlator in a silicon waveguide. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6325507 (2012 Conference on Lasers and Electro-Optics, CLEO 2012).
Wen, Y. H., Kuzucu, O., Fridman, M., Gaeta, A. L., Luo, L. W., & Lipson, M. (2012). All-optical control of an individual resonance in a silicon microresonator. Physical Review Letters, 108(22), Article 223907. https://doi.org/10.1103/PhysRevLett.108.223907
Davidson, N., Nixon, M., Ronen, E., Fridman, M., & Friesem, A. A. (2012). Phase locking large arrays of lasers. In CLEO: Science and Innovations, CLEO_SI 2012 (pp. CTu3N.7). (CLEO: Science and Innovations, CLEO_SI 2012). Optical Society of America (OSA). https://doi.org/10.1364/cleo_si.2012.ctu3n.7
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6327143 (2012 Conference on Lasers and Electro-Optics, CLEO 2012). IEEE Computer Society. https://doi.org/10.1364/qels.2012.qw1e.1
Davidson, N., Nixon, M., Ronen, E., Fridman, M., & Friesem, A. A. (2012). Phase locking large arrays of lasers. In 2012 Conference on Lasers and Electro-Optics, CLEO 2012 Article 6326151 (2012 Conference on Lasers and Electro-Optics, CLEO 2012).
Fridman, M., Pugatch, R., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Phase-locking-level statistics of coupled random fiber lasers. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(4), Article 041142. https://doi.org/10.1103/PhysRevE.86.041142
Fridman, M., Suchowski, H., Nixon, M., Friesem, A. A., & Davidson, N. (2012). Modal dynamics in multimode fibers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 29(4), 541-544. https://doi.org/10.1364/JOSAA.29.000541
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2012). Demonstration of temporal cloaking. Optics InfoBase Conference Papers.
2011
Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Enhanced coherence of weakly coupled lasers. Optics Letters, 36(8), 1320-1322. https://doi.org/10.1364/OL.36.001320
Fridman, M., Nixon, M., Friesem, A. A., & Davidson, N. (2011). Fiber amplifiers of radially or azimuthally polarized light. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers).
Fridman, M., Nixon, M., Dubinskii, M., Friesem, A. A., & Davidson, N. (2011). Principal modes in fiber amplifiers. Optics Letters, 36(3), 388-390. https://doi.org/10.1364/OL.36.000388
Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Fiber amplifiers of radially or azimuthally polarized light. In Fiber Laser Applications, FILAS 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/filas.2011.ftha4
Fridman, M., Farsi, A., Okawachi, Y., & Gaeta, A. L. (2011). Demonstration of temporal cloaking. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fmi3
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., Davidson, N., & Kanter, I. (2011). Synchronized cluster formation in coupled laser networks. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fwx4
Fridman, M., Grinvald, E., Godel, A., Nixon, M., Friesem, A. A., & Davidson, N. (2011). Real time achromatic measurement of space-variant polarizations. Applied Physics Letters, 98(14), Article 141107. https://doi.org/10.1063/1.3575567
Nixon, M., Ronen, E., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Phase locking large arrays of lasers via a single degenerate cavity. In Frontiers in Optics, FiO 2011 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2011.fwr6
Nixon, M., Fridman, M., Pugatch, R., Davidson, N., & Friesem, A. A. (2011). Phase locking fluctuations of 25 coupled fiber lasers. In Fiber Laser Applications, FILAS 2011 (Optics InfoBase Conference Papers).
Nixon, M., Fridman, M., Pugatch, R., Friesem, A. A., & Davidson, N. (2011). Phase locking fluctuations of 25 coupled fiber lasers. In 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 Article 5943173 (2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011). https://doi.org/10.1109/CLEOE.2011.5943173
Nixon, M., Ronen, E., Fridman, M., Friesem, A. A., & Davidson, N. (2011). Phase locking thousands of laser. In Advanced Solid-State Photonics, ASSP 2011 (Optics InfoBase Conference Papers).
2010
Fridman, M., Nixon, M., Ronen, E., Friesem, A. A., & Davidson, N. (2010). Phase locking of two coupled lasers with many longitudinal modes. Optics Letters, 35(4), 526-528. https://doi.org/10.1364/OL.35.000526
Eckhouse, V., Nixon, M., Fridman, M., Friesem, A. A., & Davidson, N. (2010). Synchronization of chaotic fiber lasers with reduced external coupling. IEEE Journal of Quantum Electronics, 46(12), 1821-1826. Article 5638360. https://doi.org/10.1109/JQE.2010.2047095
Fridman, M., Nixon, M., Grinvald, E., Davidson, N., & Friesem, A. A. (2010). Real-time measurement of space-variant polarizations. Optics Express, 18(10), 10805-10812. https://doi.org/10.1364/OE.18.010805
Fridman, M., Nixon, M., Dubinskii, M., Friesem, A. A., & Davidson, N. (2010). Fiber amplification of radially and azimuthally polarized laser light. Optics Letters, 35(9), 1332-1334. https://doi.org/10.1364/OL.35.001332
Fridman, M., Nixon, M., Davidson, N., & Friesem, A. A. (2010). Passive phase locking of 25 fiber lasers. Optics Letters, 35(9), 1434-1436. https://doi.org/10.1364/OL.35.001434
Nixon, M., Fridman, M., Davidson, N., & Friesem, A. A. (2010). Enhanced coherence of weakly coupled lasers due to amplitude nonlinear dynamics. In Quantum Electronics and Laser Science Conference, QELS 2010 (Optics InfoBase Conference Papers).
Nixon, M., Fridman, M., Davidson, N., & Friesem, A. A. (2010). Enhanced coherence of weakly coupled lasers due to amplitude nonlinear dynamics. In Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 Article 5500774 (Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010). Association for Computing Machinery. https://doi.org/10.1364/qels.2010.jtud12
2009
Fridman, M., Eckhouse, V., Nixon, M., Davidson, N., & Friesem, A. A. (2009). Fiber lasers with increased output brightness. In CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference Article 5192796 (CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference). https://doi.org/10.1109/CLEOE-EQEC.2009.5192796
Arane, T., Musalem, A. K. R., & Fridman, M. (2009). Coupling between two singing wineglasses. American Journal of Physics, 77(11), 1066-1067. https://doi.org/10.1119/1.3119175
Fridman, M. (2009). Fiber Lasers with Increase Output Brightness.
Fridman, M., Eckhouse, V., Nixon, M., Davidson, N., & Friesem, A. A. (2009). Fiber lasers with increased output brightness. In The European Conference on Lasers and Electro-Optics, CLEO_Europe 2009 (Optics InfoBase Conference Papers). Optical Society of America.
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2009). Phase locking and coherent combining of high-order-mode fiber lasers. In 35th European Conference on Optical Communication, ECOC 2009 - Proceedings Article 5287189 (European Conference on Optical Communication, ECOC).
Nixon, M., Fridman, M., Ronen, E., Friesem, A. A., & Davidson, N. (2009). Phase locking of two fiber lasers with time-delayed coupling. Optics Letters, 34(12), 1864-1866. https://doi.org/10.1364/OL.34.001864
2008
Ronen, E., Fridman, M., Nixon, M., Friesem, A. A., & Davidson, N. (2008). Phase locking of lasers with intracavity polarization elements. Optics Letters, 33(20), 2305-2307. https://doi.org/10.1364/OL.33.002305
Fridman, M., MacHavariani, G., Davidson, N., & Friesem, A. A. (2008). Fiber lasers generating radially and azimuthally polarized light. Applied Physics Letters, 93(19), Article 191104. https://doi.org/10.1063/1.3023072
Fridman, M. (2008). Passive coherent addition of lasers using planar interferometric combiners.
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2008). Phase locking and coherent combining of high-order-mode fiber lasers. Optics Letters, 33(18), 2134-2136. https://doi.org/10.1364/OL.33.002134
Fridman, M., Eckhouse, V., Luria, E., Krupkin, V., Davidson, N., & Friesem, A. A. (2008). Coherent addition of two dimensional array of fiber lasers. Optics Communications, 281(24), 6091-6093. https://doi.org/10.1016/j.optcom.2008.09.065
Eckhouse, V., Fridman, M., Davidson, N., & Friesem, A. A. (2008). Loss enhanced phase locking in coupled oscillators. Physical Review Letters, 100(2), Article 024102. https://doi.org/10.1103/PhysRevLett.100.024102
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2008). Simultaneous coherent and spectral addition of fiber lasers. Optics Letters, 33(7), 648-650. https://doi.org/10.1364/OL.33.000648
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2008). Effect of quantum noise on coupled laser oscillators. Physical Review A - Atomic, Molecular, and Optical Physics, 77(6), Article 061803. https://doi.org/10.1103/PhysRevA.77.061803
Fridman, M. (2008). Enhancing Synchronization of Chaotic Fiber Lasers.
2007
Fridman, M. (2007). Passive coherent addition of several eye-safe fiber lasers.
Fridman, M. (2007). Taming lasers: mode selection and coherent addition.
Fridman, M. (2007). Quantum noise in coupled lasers.
Fridman, M. (2007). Coherent combining of lasers.
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2007). Recent developments on coupled fiber lasers. In Frontiers in Optics, FiO 2007 (Optics InfoBase Conference Papers). Optical Society of America (OSA). https://doi.org/10.1364/fio.2007.fwb4
Fridman, M., Eckhouse, V., Davidson, N., & Friesem, A. A. (2007). Efficient coherent addition of fiber lasers in free space. Optics Letters, 32(7), 790-792. https://doi.org/10.1364/OL.32.000790