MultiSpin.AI – a short introduction

Prof. Lior Klein

Project Coordinator, BIU

EIC Pathfinder Open

MultiSpin.AI has received funding from the European Union under grant agreement 101130046

AI everywhere

Natural language processing ChatGPT, DeepSeek,...

Personalized education

Medical diagnosis and treatment

Autonomous vehicles

AI – computation challenges

The end of Moore's law

Moore's Law: The number of transistors in a dense integrated circuit doubles about every two years

Von Neumann bottleneck

CPU execution time - a few nanoseconds or less memory access times - tens to hundreds of nanoseconds

The end of the Dennard scaling law

Dennard scaling law: as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area. Since around 2005–2007 Dennard scaling appears to have broken down

The hunger for power

Al Co-Processor Research Project

The need for Edge computing

Data processing and analysis are performed on the devices or systems that generate the data, rather than sending all the data to a centralized location, such as a cloud server, for processing

Applications for edge computing include autonomous vehicles, industrial automation, smart cities, and healthcare monitoring systems

AI – Neuromorphic computing

5

Artificial neural network

The crossbar – analogue multiplication and accumulation (MAC)

Analogue execution of the linear operations

IJITISPIN.AI

Al Co-Processor Research Project

The crossbar – material options

Phase change materials

Al Co-Processor Research Project

Magnetoresistance (spintronics)

high resistance

The crossbar – material options

The weak spot of the magnetoresistance option

Distinguishable States

Spintronic configurations

MULTISPIN.AI AI Co-Processor Research Project

Wang et al. Nature Reviews 5, 173 (2020)

Samsung's Spintronic Crossbar with binary MTJs

The performance of MTJ-based Crossbar

		Output									
		0	1	2	3	4	5	6	7	8	9
Input	0	98.5	0	0	0.1	0.2	0.3	0.4	0.1	0.3	0
	-	0	98.6	0.3	0.1	0	0.1	0.3	0.1	0.5	0
	N	1.7	0.5	93.1	0.9	1.3	0.3	0.4	0.6	1.2	0.2
	3	0.2	0.1	1.8	91.1	0.2	2.9	0.1	1.0	2.2	0.3
	4	0.2	0.3	0.3	0.1	95.8	0.3	0.9	0.1	0.6	1.4
	5	1.0	0.1	0.1	2.4	0.3	94.0	0.8	0.3	0.8	0.1
	9	1.7	0.2	0.2	0.1	2.2	3.5	91.3	0.3	0.4	0
	2	0.2	1.7	2.2	0.6	0.5	0.3	0	93.0	0.2	1.2
	8	1.0	0.7	0.9	1.4	0.9	2.2	0.6	0.8	91.4	0.1
	6	1.1	0.9	0.2	1.3	5.1	2.7	0.3	2.1	1.4	85.0

S. Jung et al. Nature 601, 2011 (2022)

The binary spintronic crossbar has limitations

From binary to multi-state

Increasing the number of resistance states

Proceedings of the IEEE, vol. 104, no. 7, 1449, July 2016

Using a new angle – the M^2TJ

Al Co-Processor Research Project

Al Co-Processor Research Project

14

$M^{2}TJ$ - the *angular* degree of freedom

Al Co-Processor Research Project

••••

High-order magnetic anisotropy induced by shape

Al Co-Processor Research Project

 \bigcirc

 \bigcirc

Exponential number of magnetic configurations

 $2^{2*2} = 16 \qquad \qquad 2^{2*3} = 64 \qquad \qquad 2^{2*4} = 256$

Note: this is the number of distinct magnetic configurations. The number of resistance states is smaller.

MultiSpin.AI – the final goal

A spintronic crossbar where binary MTJs are replaced by M²TJ

with multiple discrete magnetic states

We plan to

- Fabricate
- Operate
- Test

About us v Research and Innovation v Publications News & Events Index

Al Co-Processor Research Project

MultiSpin.AI is a EU-funded research project that aims to revolutionise neuromorphic computing by developing and fabricating a highly efficient n-ary spintronic based edge computing co-processor capable of performing AI algorithms like Deep Learning at unprecedented speeds while drastically reducing energy consumption, ultimately enabling transformative applications like autonomous vehicles, robots, and medical devices, and contributing to the EU chip industry and reducing CO2 emissions from AI inference.

https://multispinai.eu

Get in touch

MultiSpin.AI – expectations and challenges

What are the Constraints and limitations tackled by Multispin.AI? Spintronic crossbars are promising - hundreds of tera-operations per second per watt (Samsung) – MultiSpin.AI can improve significantly their accuracy by overcoming the binary constraints

How to expedite implementation?

The fabrication challenge is considerable; therefore, the most efficient way to expedite implementation is by partnership with European chips companies

