Essential Oil-Bearing Plants from Nigeria: Studies on *Vernonia perrottettii* (Leaf and Stem Bark), Young Leaves from *Eucalyptus decaisneana* and Immature Leaves of *Hyptis suaveolens*#

Akinola O. Ogunbinu and Sunday O. Okeniyi,

Department of Chemistry, Nigeria Defense Academy, Kaduna, Kaduna State, Nigeria

Guido Flamini* and Pier L. Cioni,

Dipartimento di Chimica Bioorganica e Biofarmacia, Universita di Pisa, Via Bonanno 33, 56126 Pisa, Italy

Isiaka A. Ogunwande,*

Department of Chemistry, Faculty of Science, Lagos State University, Badagry Expressway Ojo, P. M. B. 1087, Apapa, Lagos, Nigeria

E. T. Olayinka,

Department of Chemistry and Biochemistry, Bowen University, Iwo, Osun State, Nigeria

Abstract

The essential oils from four medicinal plants from Nigeria were obtained by hydrodistillation and analyzed by means of GC and GC/MS. The main constituents of the leaf and stem oils of *Vernonia perrottettii* Sch. Bip. (Asteraceae) were sesquiterpene hydrocarbons (92.1%) with abundance of β -caryophyllene (28.1% & 39.8%) and germacrene D (34.5% & 16.0%) in the leaf and stem oils, respectively. On the other hand, the leaf oil of *Eucalyptus decaisneana* Sm. (Myrtaceae) was dominated by the monoterpene hydrocarbons (90.6%) with α -phellandrene (31.1%), p-cymene (20.8%) and γ -terpinene (11.7%) being present in large quantities. The oil composition of immature leaf of *Hyptis suaveolens* L. (Lamiaceae) revealed the abundance of β -caryophyllene (22.3%), α -phellandrene (10.6%) and caryophyllene oxide (10.3%). The compositional pattern may probably lead to the delineation of a new chemotype of this species.

Key Word Index

Vernonia perrottettii, Asteraceae, Eucalyptus decaisneana, Myrtaceae, Hyptis suaveolens, Lamiaceae, essential oil composition, β -caryophyllene, α -phellandrene, p-cymene, γ -terpinene, caryophyllene oxide, germacrene D.

Introduction

Vernonia is a genus of about 1000 species of forbs and shrubs in the family Asteraceae (1). The plants are annual and herbaceous. Some species are sometimes known as iron-weeds while others are edible and of economic value. They are known for their intense purple flowers. Plants are thornless and vary in height and number of flowers. Several Vernonia species, including V. calvoana Drake, V. amygdalina Delile,

*Part of this work was presented as Poster (P-105) at the 38th International Symposium on Essential Oils, Graz, Austria, September 7–12, 2007.

and *V. colorata* Drake, are eaten as leaf vegetables. Common names for these species include bitter-leaf, ewuro and ndole. They are common in most West African and Central African countries. They are one of the most widely consumed leaf vegetables of Nigeria, where they are a key ingredient of stew (2). The leaves have both a sweet and bitter taste. They are sold fresh or dried and are a typical ingredient in egusi soup. For example, *V. galamensis* is used as an oilseed plant in East Africa. *Vernonia* species have been used in traditional medicine for the treatment of malaria, bacterial infection, and ulcers, etc. (2). They are used as food plants by the larvae of some *Lepidoptera* species including *Coleophora vernoniaeella*

*Address for correspondence

Received: May 2007 Revised: August 2007 Accepted: October 2007 and Schinia regia (which feeds exclusively on this genus) (3). There are several reports describing the pharmacological potentials of the extracts and compounds isolated from the genus Vernonia. These included anthelmintic (3), cathartic (4), analgesic and anti-inflammatory (5,6), anti-plasmodial (7), hypoglycemic (8) and anti-mutagenic (9). Vernonia oils have potential in industrial application (10). The nutritive potentials of the plants have also been described (11–13). The genus is a source of biologically active natural compounds with diverse structural features, such as sesquiterpenes lactones (13–16), fatty acids (17), flavonoids (18) and glycosides (19). A review on the chemistry of important molecules and natural products from Vernoniae has been published (20).

Eucalyptus (family Myrtaceae) is a large genus of trees and shrubs, which originates from Australia (mainly Australia and Tasmania). It has been reported that about 500 species of Eucalyptus produce terpenoid hydrocarbons (21). The leaves of the Eucalyptus species have medicinal, pharmaceutical and flavoring properties. The essential oil-bearing Eucalyptus plants rank high both in quantity and frequency among the plants that are widely used all over the world. The oils of Eucalyptus have been used to relieve cramps, cleanse the blood, heal wounds, disinfect the air, and to treat conditions such as asthma, bronchitis, throat and skin infections, fevers, kidney infections, rheumatism, bladder infections, and sore muscles, and may lower blood sugar levels (22).

Both the extracts and oils of *Eucalyptus* species harvested from Nigeria and elsewhere are known to be rich in terpenoid compounds (23–25). One important criterion for studying the oils of this genus is the fact that they contain mono- and sesquiterpenoids and phenylpropanoids with a unique structure and their biological activities may have potential for developing new agents for use in industry and medicine (22). These compounds have been reported to possess various bioactivities including cytotoxicity and antimicrobial (23). In addition to the many species, there are chemovars (chemical varieties) or chemotypes (chemical types) among the species of *Eucalyptus*.

Hyptis suaveolens (L.) Poit (Lamiaceae) is widespread in tropical America and Northeast India. The plant is used as an appetizing agent, to combat indigestion, stomach pain, nausea, flatulence, colds, and infection of the gall bladder (26). The oil of H. suaveolens has been the subject of previous work. However, the oils from H. suaveolens differ in composition according to the geographic origin (genotype) of the plants (27–30).

In this paper, we report on the composition of the oils of *Vernonia perrottettii*, *Eucalyptus decaisneana* and *Hyptis suaveolens*. This is part of an extensive research program aimed at the characterization of the constituents of the poorly studied species of Nigeria flora.

Experimental

Plant materials: The leaves (256 g) and stem bark (320 g) of V. perrottettii were collected along the hill slopes of Isanlu-Isin, Kwara State, Nigeria, while the young leaves of Eucalyptus decaisneana (150 g) and immature leaves of Hyptis suaveolens (300 g) were harvested from trees and shrubs growing at a Forest Reserve along Ile-Ogbo Road, Iwo, Osun State, Nigeria. All collections were done during the rainy period, July

and August, 2006. The plants were authenticated by Mr. T.K. Odewo of the Herbarium Headquarters, Forestry Research Institute of Nigeria (FRIN), Ibadan, where voucher specimens were deposited.

Isolation of the oils: Essential oils were obtained from the air-dried and pulverized plant samples by hydrodistillation in all glass Clevenger-type apparatus. The oils collected over waterwere dried over anhydrous sodium sulphate and preserved under refrigeration till the moment of analysis.

Analysis of the oils: GC analysis was accomplished with a HP-5890 Series II instrument equipped with a HP-Wax and HP-5 capillary columns (both 30 m x 0.25 mm, 0.25 µm film thickness), working with the following temperature program: 60°C for 10 min, rising at 5°C/min to 220°C. The injector and detector temperatures were maintained at 250°C; carrier gas N (2 mL/min); detector dual, FID; split ratio 1:30. The volume injected was 0.5 µL. The identification of the components was performed by comparison of their retention times with those of pure authentic samples and by means of their linear retention indices (LRI) relative to the series of n-hydrocarbons. The relative proportions of the oil constituents were percentages obtained by FID peak-area normalization without the use of response factor.

GC-EIMS analysis was performed with a Varian CP-3800 gas-chromatograph equipped with a HP-5 capillary column (30 m x 0.25 mm, film thickness 0.25 mm) and a Varian Saturn 2000 ion trap mass detector. Analytical conditions: injector and transfer line temperature 220°C and 240°C, respectively; oven temperature programmed from 60–240°C at 3°C/min; carrier gas was He at a flow rate of 1 mL/min; injection of 0.2 μ L (10% hexane solution); split ratio 1:30. Mass spectra were recorded at 70 eV. The acquisition mass range was 30–300 m/z at a scan rate of 1 scan/s.

Identification of the constituents was based on comparison of the retention times with those of authentic samples, comparing their linear indices relative to the series of n-hydrocarbons, and on computer matching against commercially available spectral (NIST 98 and Adams) (31,32). Further identifications were also made possible by the use of homemade library mass spectra built up from pure substances and components of known oils and MS literature data (33–36). Moreover, the molecular weights of all the identified substances were confirmed by GC-CIMS, using MeOH as CI ionizing gas.

Results and Discussion

The oils, isolated by separate hydrodistillation were obtained in the yields of 1.59% and 1.23% v/w, respectively for the leaf and stem of V. perrottettii. The oils were both deep yellow and light-yellow in coloration, respectively. The compositions of the leaf and stem oils determined by us can be seen in Table I.

In the leaf oil of *V. perrottettii*, monoterpenes were scarcely represented, both as number of compounds and total percentage (7.3%). This main monoterpenes were hydrocarbons while the oxygenated monoterpenoids were detected only in trace amounts. The sesquiterpenes (92.1%) were highly represented by the hydrocarbons (84.0%) as compared to the oxygenated derivatives (8.1%). The main constituents were germacrene D (34.5%), β -caryophyllene (28.1%), caryophyllene oxide (3.7%)

and α -humulene (3.5%). Furthermore, some non-terpenoid aldehydes such as nonanal, pentadecanal, benzaldehyde and some straight chain (C10, C12 and C13) non-terpenoid hydrocarbons have been detected.

Table I. Constituents (%) identified from the leaf and stem oils of Vernonia perrottetti

Constituent	LR ^a	Leaf oil (%)	Stem oil (%)
camphene	955	tr	tr
benzaldehyde	963	-	tr
sabinene	978	tr	-
β-pinene	982	1.0	1.9
myrcene	991	0.4	0.6
decane	999	tr	-
α-phellandrene	1007	tr	tr
p-cymene	1028	tr	tr
limonene	1033	3.8	4.1
(Z)-β-ocimene	1040	0.4	0.3
(E)-β-ocimene	1050	1.7	1.4
linalool	1100	tr	0.2
nonanal	1104	tr	tr
terpinen-4-ol	1180	tr	0.2
lpha-terpineol	1192	tr	0.1
myrtenal	1195	tr	tr
dodecane	1199	tr	-
hexyl isovalerate	1244	tr	-
carvone	1246	tr	-
tridecane	1299	tr	tr
α-cubebene	1351	tr	tr
cyclosativene	1370	0.9	1.8
α-copaene	1376	2.4	2.6
β-bourbonene	1384	0.4	0.2
β-cubebene	1390	0.4	tr
β-elemene	1391	0.7	0.8
α-gurjunene	1409	0.4	0.5
β-caryophyllene	1419	28.1	39.8
β-gurjunene	1432	0.5	0.3
α-humulene	1456	3.5	4.8
allo-aromadendrene	1461	0.8	0.9
cis-muurola-4(14),5-diene	1463	0.3	tr
γ-muurolene	1477	1.1	0.7
germacrene D	1481	34.5	16.0
β-selinene	1487	0.7	0.9
valencene	1492	0.7	0.6
bicyclogermacrene	1495	2.5	1.7
α-muurolene	1496	0.8	0.6
δ-amorphene	1499	0.2	-
germacrene A	1505	1.0	1.0
γ-cadinene	1510	0.9	0.6
δ-cadinene	1524	3.2	3.2
β-sesquiphellandrene	1525	-	1.0
(E)-nerolidol	1564	0.6	0.2
spathulenol	1577	0.4	tr
caryophyllene oxide	1583	3.7	3.9
humulene oxide II	1608	0.6	0.2
1-epi-cubenol	1629	0.3	tr
τ-cadinol	1642	1.3	0.7
cubenol	1644	0.8	0.2
α-muurolol	1647	0.4	tr
α-eudesmol	1654	tr	1.0
0eudeSilloi			
	1656	11	0.4
selin-11-en-4α-ol	1656 1717	tr tr	0.4 0.4
	1656 1717 1940	tr -	0.4 0.4 1.4

^a Linear retention indices on HP-5 column; tr = traces < 0.1%; - absent.

The stem bark oil was dominated by sesquiterpenoids over the monoterpenes (85.5% vs. 8.8%), among which hydrocarbons (79.0%) prevailed over oxygenated constituents (6.5%). The same is true for the monoterpenes, with the hydrocarbons (8.3%) more abundant than the oxygenated derivatives (0.5%). The main constituents were β -caryophyllene (39.8%), germacrene D (16.0%) and caryophyllene oxide (3.9%) among the sesquiterpenes, and limonene (4.1%) among the monoterpenes.

The main compounds in this study have been recently reported to be the major constituents of the oil of $Vernonia\ scorpioides\ (Lam.)$ Pers (37). These were β -caryophyllene (30.6%), germacrene D (27.3%), and bicyclogermacrene (8.5%). We have also recently shown that the oils of the leaves and flowers of $Tithonia\ diversifolia\ (Hems)\ Gray,\ a\ member of the Asteraceae family, were rich in <math>\beta$ -caryophyllene and germacrene D (38). This may lead to further research on the chemotaxonomy of the Nigerian grown Asteraceae family of plants. There is lack of literature information on the oil of this species. As such, this may represent the first comprehensive systematic analysis of the oil constituents of V-perrottettii.

Monoterpenes (90.7%)—typical of Eucalyptus oils—were the predominant class of compounds identified in the colorless oil of E. decaisneana (Table II). The oil yield was 1.22% v/w. The hydrocarbon contents consist mainly of α -phellandrene (31.1%), p-cymene (20.8%) and γ -terpinene (11.7%). In addition, β -phellandrene (6.2%), α -terpinene (3.9%) and α -pinene (2.2%) among the hydrocarbons, and terpinen-4-ol (4.6%) among the oxygenated derivatives, were also present in sizeable proportions. Sixteen sesquiterpenoids have been identified, but γ -eudesmol (2.2%) was the only sesquiterpenoid identified with a percentage above 1%. 1,8-Cineole, the commonly reported compound of some Eucalyptus oils, occurred in trace amount in the studied oil. It has been proposed that *Eucalyptus* oil, with high a content of phellandrene, may contain little or no cine ole (39). Due to its high α -phellandrene content, the oil of E. decaisneana may be classified as belonging to the same group as those of Eucalyptus obliqua L' Hérit (39). β-Phellandrene was also among the quantitatively significant constituents of E. obliqua described by Li et al. (40). However, it could not be detected in significant quantity in E. obliqua analyzed from Australia (3). It should be noted that *E. decaisneana* has once been described as a synonym of E. obliqua (41).

The oil of *H. suaveolens* has been the subject of previous works. However, the oils from *H. suaveolens* differ in composition according to the geographic origin (genotype) of the plants. Previous studies on the plant from Nigeria (27) have revealed the abundant of α -pinene (13.6%), sabinene (13.2%), p-cymene (11.7%); and sabinene (30.0%), terpinen-4-ol (11.4%) from two different collections. In another analysis, Asekun and Ekundayo identified sabinene (16.5%) and trans-α-bergamotene/βcaryophyllene (19.8%) as the compounds occurring in higher amount (28). Iwu et al. had earlier reported the abundance of limonene, thujene, α-pinene, α-phellandrene, 3-cyclohexanol, 4-methyl-1-isopropy-3-cyclohexenol, 3-cyclohexenal, elemene and β-caryophyllene (42). In this present study on the light yellow oil (0.38% v/w yield) of immature leaves of the plant, β-caryophyllene (22.3%), α-phellandrene (10.6%) and caryophyllene oxide (10.3%) were the compounds identified in higher proportions (Table III). In addition, sabinene and

Table II. Oil composition (%) of Eucalyptus decaisneana

	. Die	(0/) 0 :::
Constituent	LRIª	(%) Composition
α -thujene	932	0.2
α-pinene	941	2.2
camphene	955	tr
sabinene	978	0.2
β-pinene	982	tr
myrcene	991	1.0
α-phellandrene	1007	31.1
α-terpinene	1018	3.9
p-cymene	1028	20.8
limonene	1031	2.8
β-phellandrene	1032	6.2
1,8-cineole	1035	tr
(E)-β-ocimene	1050	tr
γ-terpinene	1063	11.7
terpinolene	1088	2.7
p-cymenene	1091	tr
linalool	1100	0.3
isoamyl isovalerate	1105	0.1
cis-p-menth-2-en-1-ol	1121	0.6
trans-p-menth-2-en-1-ol	1126	0.5
borneol	1167	tr
terpinen-4-ol	1169	4.5
p-cymen-8-ol	1185	0.3
α-terpineol	1192	0.6
trans-piperitol	1207	0.3
carvotanacetone	1247	0.1
piperitone	1254	tr
carvacrol	1299	0.4
terpinen-4-yl acetate	1340	0.2
longicyclene	1374	tr
(Z)-jasmone	1394	tr
tetradecane	1399	tr
methyl eugenol	1401	tr
α-gurjunene	1409	tr
β-caryophyllene	1419	tr
aromadendrene	1439	0.4
α-humulene	1456	tr
allo-aromadendrene	1461	0.1
β-selinene	1487	tr
valencene	1492	tr
	1500	tr
pentadecane		
γ-cadinene	1511 1524	tr
δ-cadinene		tr
globulol	1585	0.6
viridiflorol	1592	tr
guaiol	1597	0.1
10-epi-γ-eudesmol	1624	0.5
γ-eudesmol	1632	2.2
bulnesol	1667	tr
Total		94.6

^a Retention indices on HP-5 capillary coated column; tr = traces < 0.1%.

trans- α -bergamotene, two of the major compounds in the earlier report (27, 28), were observed here in lower quantities, while several of the diterpenoids compounds were conspicuously not detected in the present study. Moreover we could not detect any of the cyclo compounds as defined earlier (42). The reason may be attributed to genotype, the age of the analyzed samples or some other ecological and environmental factors.

This result may therefore present a new chemotype of the plant growing in Nigeria. As such, it may be postulated that five chemotypes of the oils of *H. suaveolens* have been found

Table III. Oil constituents (%) of immature leaves of *Hyptis* suaveolens

Constituent	LRIª	(%) Composition
α -thujene	932	0.2
α-pinene	941	1.3
sabinene	978	2.8
β-pinene	982	1.5
myrcene	991	0.4
α-phellandrene	1007	10.6
α-terpinene	1018	1.5
p-cymene	1028	6.3
limonene	1033	1.3
β-phellandrene	1035	1.6
1,8-cineole	1037	0.6
γ-terpinene	1063	3.9
cis-sabinene hydrate	1070	0.3
terpinolene	1088	2.4
undecane	1099	0.5
linalool	1100	0.2
trans-sabinene hydrate	1102	0.2
β-fenchol	1120	1.1
cis-p-menth-2-en-1-ol	1123	0.2
borneol	1168	0.2
terpinen-4-ol	1179	2.2
dodecane	1199	0.6
tridecane	1299	0.3
β-elemene	1391	0.3
tetradecane	1399	0.1
isocaryophyllene	1404	0.1
β-caryophyllene	1419	22.3
trans-α-bergamotene	1439	2.2
(E)-β-farnesene	1454	0.2
α-humulene	1456	1.6
germacrene D	1481	0.3
β-selinene	1487	1.5
bicyclogermacrene	1495	4.2
germacrene A	1505	0.3
spathulenol	1577	5.4
caryophyllene oxide	1583	10.3
globulol	1585	0.1
caryophylla-4(14),8(15)-dien-5-ol	1640	0.6
τ-cadinol	1642	0.3
α -cadinol	1655	0.5
selin-11-en-4α-ol	1658	1.4
trans-α-bergamotol	1691	5.7
Total		97.6

^a Linear retention indices on HP-5 column.

to exist so far in Nigeria; oil with abundance monoterpene and sesquiterpene hydrocarbons in addition to 3-cyclohexanol, 4-methyl-1-isopropy-3-cyclohexenol and 3-cyclohexenal (40); oil dominated by α-pinene, sabinene and p-cymene; those with abundance of sabinene and terpinen-4-ol (27); sabinene and β-caryophyllene/trans-α-bergamotene-rich oil (28) and the oil containing higher proportions of β -caryophyllene, α phellandrene and caryophyllene oxide, as defined in the present study. This result looks similar to those oils from Nigeria (28), Tanzania (29) and Cameroon (30) by their high β -caryophyllene contents. Another study on this species from Cameroon (43) had revealed the abundance of sabinene, β -pinene, limonene, p-cymene and β -caryophyllene. The sample analyzed from Mali was shown to consist mainly of sabinene with β-caryophyllene/ trans-\alpha-bergamotene (44). However, neither of these mentioned reports nor those from other parts of the world contained high amounts of α -phellandrene and caryophyllene oxide.

Acknowledgments

The authors appreciate the effort of Late Mr. F. Usang in the identification of the plant samples and are highly grateful to Mrs. Ogunwande Musilimat for typing the manuscript.

References

- J.D. Willis, A Dictionary of the Flowering Plants and Ferns, Revised by H.K. Airy-Shaw, p. 1177, Cambridge Univ. Press, Cambridge, UK (1966).
- H.M. Burkill, The Useful Plants of West Tropical Africa. Families J-L, 3, pp. 562–564, Royal Botanic Gardens, Kew, UK (1995).
- C.B.I. Alawa, A.M. Adamu, J.O. Gefu, O.J. Ajanusi, P.A. Abdu, N.P. Chiezey, J.N. Alawa and D.D. Bowman, In Vitro Screening of Two Nigerian Medicinal Plants (Vernonia amygdalina and Annona senegalensis) for Anthelmintic Activity. Vet. Parasitol., 113, 73–81 (2003).
- S.O. Awe, J.M. Makinde, and O.A. Olajide, Cathartic Effect of the Leaf Extract of Vernonia amygdalina. Fitoterapia, 70, 161–165 (1999).
- E.O. Iwalewa, O.J. Iwalewa and J.O. Adeboye, Analgesic, Antipyretic, Anti-inflammatory Effects of Methanol, Chloroform and Ether Extracts of Vernonia cinerea Leaf. J. Ethnopharmacol., 86, 229–234 (2003).
- A.L. Valverde, G.L.C. Cardoso, N.A. Pereira, A.J.R. Silva and R.M. Kuster, *Analgesic and Antiinflammatory Activities of Vernonioside B2 from* Vernonia condensate. Phytother. Res., 15, 263–264 (2001).
- S.F Mbatchi, B. Mbatchi, J.T. Banzouzi, T. Bansimba, G.F.N. Ntandou, J.-M. Ouamba, A. Berry and F. Benoit-Vical. In Vitro\Antiplasmodial Activity of 18 Plants Used in Congo Brazzaville Traditional Medicine. J. Ethnopharmacol., 104, 168–174 (2006).
- G.Y. Sy, A. Cissé, R.B. Nongonierma, M. Sarr, N.A. Mbodj and B. Faye, *Hypoglycaemic and Antidiabetic Activity of Acetonic Extract of Vernonia* colorata *Leaves in Normoglycaemic and Alloxan-Induced Diabetic Rats*. J. Ethnopharmacol., 98, 171–175 (2005).
- E.E. Obaseiki-Ebor, K. Odukoya, H. Telikepalli, L.A. Mitscher and D.M. Shankel, Antimutagenic Activity of Extracts of Leaves of Four Common Edible Vegetable Plants in Nigeria (West Africa). Mutat. Res. Lett., 302, 109–117 (1993).
- E.D. Casebolt, B.E. Mote and D.L. Trumbo, Applications of Vernonia Oil in Thermoset Coatings II. Progr. Org. Coat., 44, 147–151 (2002).
- O. Aletor, O.O. Oshodi and K. Ipinmoroti, Chemical Composition of Common Leafy Vegetables and Functional Properties of their Leaf Protein Concentrates. Food Chem., 78, 63–68 (2002).
- S.E. Atawodi, E.N. Maduagwu, R. Preussmann and B. Spiegelhalder, Preformed Volatile Nitrosamines in Some Nigerian Foodstuffs. Food Chem. Toxicol., 31, 835–855 (1993).
- O.O.P. Faboya, The Effect of Pre-Process Handling Conditions on the Ascorbic Acid Content of Green Leafy Vegetables. Food Chem., 38, 297–303 (1990).
- P. Erasto, D.S. Grierson and A.J. Afolayan, *Bioactive Sesquiterpene Lactones from the Leaves of Vernonia amygdalina*. J. Ethnopharmacol., 106, 117–120 (2006).
- G.N.K. Krishna Kumari, S. Masilamani, M.R. Ganesh, S. Aravind and S.R. Sridhar, Zaluzanin D: a Fungistatic Sesquiterpene from Vernonia arborea. Fitoterapia, 74, 479–482 (2003).
- Babady-Bila, A. Kilonda, S. Mihigo, O. Lohohola, T.S. Tshibey, F. Compernolle, S. Toppet and G.J. Hoornaert, *Potamopholide, a New Sesquiterpene Lactone from* Vernonia potamophila. Eur. J. Org. Chem., 1, 123–127 (2003).
- T. Baye, H.C. Becker and S. von Witzke-Ehbrecht, Vernonia galamensis, a Natural Source of Epoxy Oil: Variation in Fatty Acid Composition of Seed and Leaf Lipids. Ind. Crops Prod., 21, 257–261 (2005).
- G. Tian, U. Zhang, T. Zhang, F. Yang and Y. Ito, Separation of Flavonoids from the Seeds of Vernonia anthelmintica Willd by High-Speed Counter-Current Chromatography. J. Chromatogr., A., 1049, 219–222 (2004).
- M. Jisaka, H. Ohigashi, T. Takagaki, H. Nozaki, T. Tada, M. Hirota, R. Irie, M.A. Huffman, T. Nishida, M. Kaji and K. Koshimizu, *Bitter Steroid Glucosides, Vernoniosides A*₁, A₂, and A₃, and Related B₁ from a Possible Medicinal Plant, Vernonia amygdalina, Used by Wild Chimpanzees. Tetrahedron, 48, 625–632 (1992).
- F. Bohlmann and J. Jakupovi, Progress in the Chemistry of the Vernonieae (Compositae). In: Research Advances in the Compositae. Plant Systematics and Evolution, Suppl. 4, Edits., T.J. Mabry and G. Wagenitz, pp. 3–43, Springer-Verlag Wien, New York, NY (1990).

- G.M. Chippendale, Eucalyptus of the Western Australia Goldfields. Australian Govt. Publ. Co. Melbourne, Australia (1973).
- I.A. Ogunwande, Compositional Patterns of the Essential Oils of the Leaves of Eucalyptus, Thuja, Callitris and Melaleuca Species Growing in Nigeria. PhD Thesis, p. 69, University of Ibadan, Nigeria (2001).
- I.A. Ogunwande, N.O. Olawore, K.A. Adeleke and O. Ekundayo, Volatile Constituents from the Leaves of Eucalyptus cloeziana F. Muell and Eucalyptus propinqua Deane and Maiden from Nigeria. Flav. Fragr. J., 20, 637–639 (2005).
- S.T. Jimoh, I.A. Ogunwande, N.O. Olawore, T.M. Walker, J.M. Schmidt, W.N. Setzer, N.O Olaleye and S.A Aboaba, *In Vitro Cytotoxicity Activities of Essential Oils of Eucalyptus torreliana F.v. Muell (Leaves and Fruits)*. J. Essent. Oil Bear. Plants, 8, 110–119 (2005).
- C.M. Bignell, P.J. Dunlop, J.J. Brophy, C.J.R. Fookes, Volatile Leaf Oils of some South-western and Southern Australian Species of the Genus Eucalyptus (Series I). Part XIV. Subgenus Monocalyptus. Flav. Fragr. J., 12, 177–183 (1997).
- B. Oliver-Beyer, Medicinal Plants in West Africa, p. 225, Cambridge Univ. Press, London, UK (1982).
- A.O. Eshilokun, A.A. Kasali and A.O. Giwa-Ajeniya, Chemical Composition of Essential Oils of Two Hyptis suaveolens (L.) Poit Leaves from Nigeria. Flav. Fragr. J., 20, 528–530 (2005).
- O.T. Asekun and O. Ekundayo, Essential Oil Constituents of Hyptis suaveolens (L.) Poit. (Bush Tea) Leaves from Nigeria. J. Essent. Oil Res., 12, 227–230 (2000).
- R.S. Malele, C.K. Mutayabarwa, J.W. Mwangi, G.N. Thoithi, A.G. Lopez, E.I. Lucini and J.A. Zygadlo, Essential Oil of Hyptis suaveolens (L.) Poit. from Tanzania: Composition and Antifungal Activity. J. Essent. Oil Res., 15, 438–439 (2003).
- F. Tchoumbougnang, P.H. Amvam Zollo, F. Fekam Boyom, M.A. Nyegue, J.M. Bessière, and C. Menut, Comparative Study of the Essential Oils of Four Hyptis Species from Cameroon: H. lanceolata Poit., H. pectinata (L.), H. spicigera Lam. and H. suaveolens Poit. Flav. Fragr. J., 20, 340–343 (2005).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Publ. Corp., Carol Stream, IL (1995).
- A.A. Swigar and R.M. Silverstein, Monoterpenes. Aldrich Chem. Comp., Milwaukee, WI (1981).
- E. Stenhagen, S. Abrahamsson and F.W. McLafferty, Registry of Mass Spectral Data. J. Wiley & Sons, New York, NY (1974).
- Y. Massada, Analysis of Essential Oils by Gas Chromatograph and Mass Spectrometry. J. Wiley & Sons, New York, NY (1976).
- W. Jennings and T. Shibamoto, Qualitative Analysis of Flavorand Fragrance Volatiles by Glass Capillary Chromatography. Academic Press, New York, NY (1980).
- N.W. Davies, Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicone and Carbowax 20M Phases. J. Chromatogr., 503, 1–24 (1990).
- M.R.J.R. Albuquerque, T.L.G. Lemos, O.D.L. Pessoa, E.P. Nunes, R.F. Nascimento and E.R. Silveira, *Chemical Composition of the Essential Oil from* Vernonia scorpioides (Asteraceae). Flav. Fragr. J., 22, 249–250 (2007).
- D.O. Moronkola, I.A. Ogunwande, T.M. Walker, W.N. Setzer and O.I. Oyewole, *Identification of The Main Volatile Compounds in the Leaf and Flowers of* Tithonia diversifolia (Hems) Gray. J. Nat. Med., 61, 63–66 (2007).
- H. Finnemore, The Essential Oils, pp. 570, Ernest Benn Ltd: Bonn, Germany (1926).
- H. Li, J.L. Madden and B.M. Potts, Variation in Volatile Leaf Oils of the Tasmanian Eucalyptus Species-1. Subgenus Monocalyptus. Biochem. Syst. Ecol., 23, 299–318 (1995).
- 41. A.R. Penfold and J.L. Wills, *The Eucalyptus*. Interscience Publ. Inc., New York, NY (1961).
- M.M. Iwu, C.O. Ozeugwu, C.O. Okunji, D.R. Sanson and M.S. Tampesta, *Antimicrobial Activities and Terpenoids of the Essential Oil of Hyptis* suaveolens. Int. J. Crude Drug Res., 28, 73–76 (1990).
- M.B. Ngassoum, L. Jirovetz and G. Buchbauer, Essential Oil and Headspace from Hyptis suaveolens (L.) Poit. Leaves and Flowers from Cameroon. J. Essent. Oil Res., 11, 283–288 (1999).
- L. Sidibe, J.-C. Chalchat, R.-P. Garry and M. Harama, Aromatic Plants of Mali (III): Chemical Composition of Essential Oils of Two Hyptis Species: H. suaveolens (L.) Poit. and H. spicigera Lam. J. Essent. Oil Res., 13, 55–57 (2001).