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Abstract—We study a decentralized channel allocation problem
in an ad-hoc Internet of Things network underlaying on the
spectrum licensed to a primary cellular network. In the considered
network, the impoverished channel sensing/probing capability and
computational resource on the IoT devices make them difficult
to acquire the detailed Channel State Information (CSI) for the
shared multiple channels. In practice, the unknown patterns of
the primary users’ transmission activities and the time-varying
CSI (e.g., due to small-scale fading or device mobility) also cause
stochastic changes in the channel quality. Decentralized IoT links
are thus expected to learn channel conditions online based on
partial observations, while acquiring no information about the
channels that they are not operating on. They also have to reach an
efficient, collision-free solution of channel allocation with limited
coordination. Our study maps this problem into a contextual
multi-player, multi-armed bandit game, and proposes a purely
decentralized, three-stage policy learning algorithm through trial-
and-error. Theoretical analyses shows that the proposed scheme
guarantees the IoT links to jointly converge to the socially optimal
channel allocation with a sub-linear (i.e., polylogarithmic) regret
with respect to the operational time. Simulations demonstrate that
it strikes a good balance between efficiency and network scalability
when compared with the other state-of-the-art decentralized
bandit algorithms.

Index Terms—Contextual multi-player multi-armed bandits, ad-
hoc IoTs, sub-linear regret, decentralized learning.

I. INTRODUCTION

The global proliferation of the Internet-connected devices
has spawned a high demand for the research into support-
ing Internet-of-Things (IoT) communications towards next-
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generation wireless technologies. In novel IoT-centric use cases
such as advanced metering and monitoring infrastructures for
smart city/industry, the IoT networks are typically based on
the co-channel deployment of the computation/power-limited
Machine-Type Communication (MTC) devices [1], [2] over
unlicensed frequency bands. Meanwhile, these applications
demand frequent transmission of small-size data either di-
rectly between MTC devices [3] or from these devices to
IoT gateways. As a result, the unique characteristics of IoT
imposes a series of challenges to the adaptation of the off-
the-shelf Media Access Control (MAC) protocols in network
design. Especially, the IoT networks are expected to support
applications requiring a relatively high degree of efficiency and
scalability, but on a basis of light-weight MAC mechanisms
and minimum infrastructure, mainly due to the constraints of
complexity and power resources on the devices.

In this paper, we investigate the problem of handling an anar-
chy group of low-complexity IoT devices for their connections
underlaying over the multiple bands of a primary network. In a
typical setting of heterogeneous narrow-band IoT networks, the
underlaying IoT transmission can retain an efficient data rate
by adopting a proper resource-block spreading factor, while
causing negligible interference to the licensed cellular users by
scaling the transmit power accordingly [4]. However, due to
the impoverished resources of the low-power, light-weight IoT
devices, it is impractical for them to perform simultaneous, real-
time channel estimation for multiple bands with unknown, time-
varying activities of the licensed users. Also, due to the limited
signaling capability of IoT devices, a pure contention-based or
reservation-based channel allocation scheme (e.g., random ac-
cess or coordinated access) is not able to meet the requirements
of scalability, efficiency and reliability at the same time. For this
reason, we aim to design a low-complexity, purely decentralized
allocation scheme that associates the logical channels over
the unlicensed bandwidth with each ad-hoc IoT link, while
guaranteeing the social performance of the entire network.

To achieve the two-fold goal of decentralization and so-
cially optimal performance for channel allocation, we propose
a framework of decentralized strategy learning for channel
association based on Multi-Player (MP) Multi-Armed Bandits
(MAB). Under the proposed learning framework, the IoT
devices gradually learn their link quality over each channel and
then resolve the channel contention problem without explicit
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signaling. More specifically, we formulate the IoT devices as
the players of an MAB game, and the fading channels as the
stochastic arms of the MAB. To address the interference from
the co-existing primary transmissions, we further extend our
MP-MAB formulation by considering the underlying arm-value
distribution to be non-stationary. In particular, the instantaneous
quality of an IoT link established over a primary channel1 is
determined by not only the stochastic channel state, but also the
context of primary transmissions that the coexisting licensed
users happen to operate upon. This leads to a multi-player
extension of the contextual MAB [5], where the reward of each
arm for every player is jointly determined by the context (i.e.,
the radio environment information) and the players’ actions.
The goal of investigating this contextual MP-MAB is to find
optimal policies mapping from the random samples of context-
reward pairs over the licensed channels to a sequence of actions
of channel association, to maximize the accumulated sum of
achievable throughput (i.e., received reward) by the IoT links
along the time horizon.

The rest of the paper is organized as follows: Section II
discusses the related works in the recent literature. Section III
mathematically transform the considered channel-allocation
problem into a contextual MP-MAB game, based on which we
propose the purely decentralized social-optimal policy learning
algorithm in Section IV. The efficiency of the proposed algo-
rithm is mathematically analyzed in Sections V and VI, where
Section V provides the theoretical bound on the regret of the
proposed algorithm for contextual MP-MAB, and Sections VI
analyzes the efficiency of the proposed algorithm when the
contexts are not observable to the players. Section VII provides
a series of experiment/simulation results regarding the proposed
algorithm for heterogeneous IoT networks over unlicensed
spectrum. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Channel Access Mechanisms for IoT Networks

The reservation-based MAC protocols, such as the canon-
ical F/T/C-DMA or OFDMA schemes, are able to achieve
deterministic Quality of Service (QoS). However, the need
of coordination over a dedicated feedback/control channel by
the Access Points (APs) (e.g., [6]) limits their deployment to
the scenarios in a cellular infrastructure. Comparatively, the
contention-based protocols, e.g., ALOHA and CSMA/CA, are
able to support larger scale M2M networks but face the issue
of providing only opportunistic QoS guarantee. As a result, the
hybrid MAC scheme is studied by a number of works in the
literature [7], [8] when a centralized coordinator (e.g., AP) is
available in the IoT network. The hybrid MAC schemes are
featured by the aggregation of the contention-based and the
reservation-based protocols. They allow the network to guar-
antee fairness among contending users with ALOHA/CSMA-
like schemes. The rate efficiency is then provided with pre-

1In what follows, we use the pairs of terms “channel” and “arms”, and
“links” and “players” interchangeably.

allocated orthogonal resources (e.g., time slots or sub-carriers)
to a selected group of devices that win the resource contention.

When APs (namely, infrastructure) are non-existent for the
IoT networks over shared spectrum, random-access based
on contentions becomes more suitable than the reservation-
based schemes. In the scenario of multi-channel association
with a dedicated common control channel, channel-contention
resolutions based on the RTS/CTS dialog over the control
channel are designed for devices equipped with multiple anten-
nas/sensors [9]. Alternatively, decentralized channel swapping
mechanisms are proposed for the cases in which no coordi-
nation channel is accessible for time-synchronized nodes [10],
[11] or for nodes even without global synchronization [12].
Usually, nodes over each channel are assumed to be fully
connected to avoid the hidden terminal problem. In different
studies, an operational phase of broadcasting beacon packets
over randomly selected channels is commonly adopted to
either determine the level of congestion [10] or to locate free
bands [11], [12] for collision avoidance. Particular mechanisms
such as master node (known as SYNC node in [10]) election
are proposed to designate the IDs of nodes and channels
that swapping/hopping is allowed for, in order to achieve a
convergent solution among the decentralized devices [10], [11].

However, most contention/swapping-based decentralized
MAC schemes in the literature prioritize non-colliding alloca-
tion over social-optimal network performance. Another obstacle
for designing an efficient and decentralized IoT MAC scheme
over multi-channels lies in the lack of CSI in an unknown
time-varying wireless environment. As a result, the demand
for efficient decentralized MAC schemes in IoT networks in-
spires the adoption of distributed stochastic learning algorithms,
which range from decentralized stochastic learning automata in
repeated channel allocation games [13] to channel allocation in
a framework of MP-MAB based on distributed auction [14] or
hopping [15], [16] with different levels of message exchanges.

B. MP-MAB for Resource Allocation in Wireless Networks
In wireless networking, the MAB-based formulation was first

introduced for the single-user-multi-channel selection problem
in Cognitive Radio Networks (CRNs), where channel states
are stochastic and not fully observable due to the unknown
activities of the primary user [17], [18]. In the single-player
scenario, the player’s goal is to maximize the expected accu-
mulated reward, namely, the achievable transmit rate in the long
run. When the pulled arm yields i.i.d. random rewards following
a stationary but unknown distribution, such a distribution can
be learned from repeated plays for abstracting the unknown
wireless environment, i.e., the quality of each orthogonal chan-
nel [19]. Unlike supervised learning, the value of each arm
in the MAB is not known in advance, and the player is only
able to observe the value of the pulled arm, one at each time.
Therefore, it is necessary to infer the best arm-values from such
historical partial observation through trial and error. Essentially,
the solution to this well-know problem is about striking a trade-
off between policy exploitation and exploration. Namely, the
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player needs to properly choose whether to gain the myopic
optimal reward, or to further improve its arm-value estimation
in order to avoid choosing a sub-optimal arm in the long run.
The former goal is achieved by selecting the best arm/channel
according to the available observation record, while the latter
is achieved through proper policy exploration.

It is natural to extend the problem formulation from single-
player MAB to the case of MP-MAB [20], especially in the
multi-link context of CRNs, which have to frequently deal
with unknown stochastic channels due to the unpredictable
activities of primary users [21], [22]. With decentralized and
simultaneous arm selection, collisions have to be handled
when more than one player choose the same arm. At each
round of play in the MP-MAB, every player chooses one
arm to pull according to its own observation history of arm-
value feedback, while a certain level of coordination (i.e.,
messaging between devices) may be allowed based on different
assumptions of information exchange capabilities [23]–[25] for
collision resolution. The rewards of the same arm observed
by different players are frequently assumed to be drawn from
different and unknown i.i.d. distributions (e.g., [11]), which
reflects the independent pathloss and shadowing properties
of different user links over the same channel. With such a
multi-player formulation, a repeated game of heterogeneous
players evaluating player-dependent rewards over the candidate
channels can be developed (e.g., [22], [26]).

C. Contribution
Compared with the existing studies in the literature, our

research further extends the expressiveness of the MP-MAB
formulation with a new dimension of freedom brought by
the environmental context information [27]. In the considered
scenario of coexisting IoT network operation over spectrum
licensed to primary users, we employ a discrete set of contexts
to quantitatively reflect the interference caused to the ad-
hoc IoT links by the primary transmissions. Such formulation
allows us to further address the randomness of the network
environment, which can be widely observed in different wire-
less networking protocol layers such as user hand-off between
cells in a CRN [28] and multi-task execution with different
levels of QoS [29]. However, the introduction of the discrete
context requires the MP-MAB algorithm designer to reconsider
the regret propagation from the very beginning of the learning
process as well as the collision avoidance mechanism among
the decentralized links. Bearing these challenges in mind, the
main contributions of this paper are summarized as follows:
• We model the dynamic channel allocation problem in an

ad-hoc IoT network over shared spectrum as a multi-player
contextual MAB. Especially, we address the problem of
unknown stochasticity in both channel states and non-
controllable activities of the underlying licensed users at
the same time. We propose a novel decentralized online
learning algorithm, which achieves socially optimal chan-
nel allocation with no need of the a-priori knowledge about
channel statistics and radio context evolution.

• We study a generalized scenario where IoT links observe
heterogeneous achievable rates over the same channel in
the same radio context (e.g., due to different distances
from the primary transmitter). Extended from a typi-
cal exploration-exploitation framework for single-player
contextual MAB [30], theoretical analysis is provided
regarding the convergence property and the network per-
formance, under the framework of efficient pure Nash
Equilibrium (NE) selection with log-linear learning [31].

• Theoretically, we show that the proposed scheme achieves
polynomial logarithmic regret over time and can handle a
large number of discrete contexts. Simulation experiments
demonstrates this by comparing the proposed algorithm
with a number of state-of-the-art MP-MAB algorithms.

III. PROBLEM FORMULATION

A. Network Model

We consider M ad-hoc IoT links attempting to access L (L≥
M ) uncorrelated unlicensed channels2 in the underlay mode.
Each link independently chooses a channel to transmit over,
and each channel supports no more than one link at the same
time. During the network operation, the primary users cause
a random level of interference on the channels. The received
signal of link m over channel l can be expressed as

ylm(t) = hlm(t)sm(t) + hlp,m(t)sp(t) + nl(t), (1)

where hlm(t) and hlp,m(t) are the coefficients of channel l for
the IoT link m and its received interference from the primary
transmission, each of which is sampled from an unknown
i.i.d. probability distribution over time, determined by both the
unknown stochastic device-mobility patterns and small-scale
fading. sm(t) and sp(t) are the transmit signals of the IoT
link and the primary link, respectively. nl(t) is the Additive
White Gaussian Noise (AWGN) with an unknown variance σ2

l .
We consider that the IoT links operate in a synchronous time-
slotted manner, and the operating slot is set to be of the same
timescale as the coherence time of the fading channel. We adopt
the mild assumption that the primary interference dominates
the perceivable interference plus noise at the IoT receivers. At
the beginning of a time slot, the IoT devices are able to sense
the instantaneous, discrete levels of the licensed transmission
power over the spectrum either by employing a simple energy
detector or through the feedback of the primary base station.
For example, without the presence of the IoT transmission, the
finite discrete power level of the primary user over channel
l is measured by Y lm =

∑Ns
i=1 ‖ylm(i)‖2 as xl, where Ns is

the number of samples collected during the sensing sub-slot.
However, the IoT links do not know the stochastic activity (e.g.,
power-selection) patterns of the licensed users. The network
structure is shown in Figure 1.

2We assume that the MTC transmissions can be delayed or advanced to
avoid overwhelming the available number of bands. Otherwise, all channels are
occupied when L < M , and collision avoidance techniques are thus needed
in addition to bandit-based learning.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3119204

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



Link 1: Channel 1

Primary User
Link 3: Channel 3

Link 2: Channel 1

Action 
Exploration

Trial-and-error Learning Action Exploitation

Action 
Exploration

Trial-and-error Learning Action Exploitation

Action 
Exploration

Trial-and-error Learning Action Exploitation

Snaptshot of Network Topology

... ... ...

Slots of Action 

Exploration

Intermediate 

Game Formation

Slots of Action-

State-Based 

Equlibrium Learning

Slots of Equilibrium Action 

Plays

Decentralized Channel Allocation Protocol 

Organized in Epochs

Interference

Collision Link 1

Link 2

Link 3

Synchronization

...

...

...

...

Repeatition

Epoch 
Details

Fig. 1. Topology of a fixed-size cognitive ad-hoc IoT network and the three phases of decentralized policy learning in synchronized time slots.

Due to the limited signal processing capability, an IoT device
is only able to measure the link QoS in best-effort bitrate over
its selected channel at the end of a time slot. When no collision
happens during time slot t, this can be upper-bounded by the
achievable throughput, which is proportional to:

rlm(t) = log2

(
1 +

‖hlm(t)‖2Pm
‖hlp,m(t)‖2Pp + σ2

l

)
, (2)

where Pm and Pp are the transmit power of IoT link m and the
primary link, respectively. Otherwise, link m will fail to deliver
any data on the colliding channel and observe zero throughput.
The IoT transmitter-receiver pairs are expected to (implicitly)
learn device-mobility and the interference patterns from only
the QoS measurement of its selected channels over time. In
addition, they have to infer the channel-selection policies of
the other links without inter-link messaging, not only to avoid
collisions with other devices but also to learn its policies toward
the socially optimal allocation.

B. Decentralized Channel Allocation as a Contextual MP-MAB

Based on the network model described in Section III-A, we
formulate the decentralized channel selection problem as an M -
player, L-arm contextual bandit game. Following the discussion
above, let x denote the context variable describing the power
level of the licensed user over the bandwidth. From (1), we
note that with the licensed user evenly distributing its power
over the entire spectrum, the primary interference to an IoT link
is homogeneous over each logic channel3. However, It varies
for different IoT receivers due to their different distances from
the primary transmitter. We consider that x is discretized into
a finite context space X with the cardinality |X | = X . The
context evolution of the primary transmission power level is
independent of the IoT links’ choices of channel association,
and follows an unknown stationary random process. When no
collision over the channels occurs, the players receive rewards
from their selected arms by measuring the normalized QoS

3We note that the scenario of heterogeneous power allocation by the primary
user over different channels can be addressed by introducing a context vector
x = [x1, . . . , xL]

T, which does not affect our discussion in this paper.

feedbacks according to (1) over that channel. The players
repeatedly play the bandit game by simultaneously selecting
the channels to operate on without any inter-link coordination.
Our aim of designing the bandit-based learning mechanism is to
maximize the sum of best-effort transmit rates of all the players,
which is accumulated over a finite but unknown time horizon
T . Mathematically, we abstract the contextual MP-MAB game
for channel allocation in the ad-hoc IoT network as follows.

Definition 1 (Contextual MP-MAB). In an M -player, L-arm
contextual bandit game, there is a distribution Dm for each
player m (1 ≤ m ≤ M ) over the context and arm-values
(x, rm,1, . . . , rm,L). rm,l ∈ [0, 1] is the normalized reward of
player m on arm l ∈ {1, . . . , L}. During the repeated play,
xt is drawn and revealed from the independent, unknown
context distribution before round t, and the arm rewards for
each player m are sampled from Dm. After the players take
simultaneous actions at= [at1, . . . , a

t
M ]>, player m receives a

reward rtm,atm ∈ [0, 1] when no collision occurs over its selected
arm l=atm. Otherwise, it receives 0.

Let vt = [vt1, . . . , v
t
M ]> denote the vector of instantaneous

rewards received by the M players in round t. Then, by taking
into account the collision of players over a pulled arm, we
obtain the reward of player m, ∀m ∈ {1, . . . ,M} as

vtm(at) = rm,atm1

(
M∑
i=1

1(ati, a
t
m), 1

)
, (3)

where 1(a, b) is the indicator function with 1(a, b)=1 if a=b
and 1(a, b)=0 otherwise. rm,atm is the normalized achievable
throughput of link m based on (2) when no collision occurs
over the selected channel according to action atm. Let rt =
[rtm,l]

>
1≤m≤M,1≤l≤L denote the vector of the players’ arm val-

ues with respect to context x, and D be the arbitrary distribution
of the pair (x, r). Then, we aim to develop an algorithm that
determines the joint policy π(x) : X → {1, . . . , L}M to maxi-
mize the social utility,

∑T
t=1E(xt,rt)∼D

{∑M
m=1 v

t
m(π(xt))

}
,

i.e., the expected accumulated reward of all the IoT links. To
help examining the performance of our algorithm, we introduce
the concept of regret as follows.
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Definition 2 (Regret for Observable Contexts). Let V (π) =

E(xt,rt)∼D

{∑M
m=1 v

t
m(π(xt))

}
denote the expected reward of

a joint policy π. Let ZT = {(x1, r1), . . . , (xT , rT )} denote a
series of T context-value pairs drawn from the distribution D.
Then, for an algorithm B that generates a corresponding series
of policies B = {π̃1, . . . , π̃T }, the expected regret of B with
respect to a policy π is

∆R(B, π, T ) = TV (π)− EZT∼D

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (4)

The regret of algorithm B with respect to policy space Π is

∆R(B,Π, T )= sup
π∈Π

TV (π)−EZT∼D

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (5)

An efficient decentralized policy-learning algorithm B has
to achieve a sublinear regret ∆R(B,Π, T ) in T , namely,
lim
T→∞

∆R(B,Π, T )/T =0. Due to the partial observability that
rewards are only revealed for the pulled arms, an efficiently
algorithm needs to form the unbiased estimation of arm values
in order to learn the accurate matching between the arms
and the players. Furthermore, a purely decentralized algorithm
needs to avoid requesting excessive exchange of action informa-
tion among players. Thus, learning the optimal arm-allocation
schemes solely based on their local information is preferred.

IV. EPOCH-BASED POLICY LEARNING ALGORITHM

Since the number of playing rounds T is not known in
advance, we divide the process of decentralized learning B
in repeated plays into epochs/mini-batches, each of which
contains three explicit phases of policy exploration, optimal-
policy learning and policy exploitation. The right-hand side of
Figure 1 shows the structure of one epoch of plays from the
perspective of synchronized IoT devices. During the exploration
phase, the players independently try different arms uniformly
at random in order to estimate the mean value of the payoff
obtained on each arm when no collision occurs. Consequently,
with the observation accumulated in the exploration phase, the
players adopt a purely decentralized learning scheme through
trial-and-error from [31] to learn the optimal arm association.
This is achieved through distributively searching the socially
optimal equilibria of a group of intermediate non-cooperative
games, which are constructed based on the arm-value estima-
tion obtained in the exploration phase for different contexts. In
the exploitation phase, the players stick to the policies derived
from the policy-learning phase for multiple rounds. Intuitively,
the estimation of the expected reward for each arm-player pair
may introduce errors, and the arm allocation learned in the
policy learning phase may be sub-optimal as well. As a result,
the main goal of our study is to analyze the error propagation
from the first two phases and determine the bound of the regret
of the entire learning process subsequently.

The policy-learning algorithm in the mini-batch framework
shown in Figure 1 is formally presented in Algorithm 1. In the

k-th epoch, the number of rounds needed for a player in the
phases of exploration, trial-and-error learning and exploitation
are functions of the epoch number, i.e., f(k), g(k) and h(k), re-
spectively. In the exploration phase (Lines 3-9 in Algorithm 1),
a single player learns independently its expected payoff over
each arm by randomly selecting its actions. In the trial-and-
error learning phase, a group of intermediate non-cooperative
games are formulated based on the arm-values estimated in
the exploration phase for each context (see Lines 11-17 in
Algorithm 1). The optimal player-arm matching scheme in each
context is learned in a purely decentralized manner with respect
to the intermediate game (Lines 18-21 in Algorithm 1). More
specifically, instead of updating the policies according to the
immediate feedback of the random arm-values in each round,
the players learn their policies in the intermediate game by
fixing the value of each arm as the estimated rewards obtained
from the previous exploration phase. Following Algorithm 2,
the optimal policies are learned as the efficient Nash Equilibria
(NE) of the intermediate games. For a context x ∈ X appearing
in epoch k, we use the vector of the estimated expected arm-
values [µkm,l(x)]>1≤m≤M,1≤l≤L in (7) to construct an interme-
diate M -player non-cooperative game G(x) as follows.

Definition 3 (Intermediate Non-cooperative Game). The inter-
mediate game G(x) at the k-th epoch for context x can be
expressed in a three-tuple: G(x) = 〈M,×Am, {uxm}m∈M〉,
where M = {1, . . . ,M} is the set of players, Am =
{1, . . . , L} is player m’s action set corresponding to the
candidate arms, and uxm = uxm(a) is the payoff of player
m ∈M under a joint action a = [a1, . . . , aM ]>:

uxm(a) = µkm,am(x)1

(
M∑
i=1

1(ai, am), 1

)
, (6)

where µkm,am(x) is the expected reward of arm l = am that
player m estimates in the k-th exploration phase, derived
following (7).

The design of the intermediate games in Definition 3 is based
on the presumption that the most efficient equilibria of the con-
structed intermediate games for each x coincide with the social-
optimal policies of the MP-MAB game. The detailed discussion
on the validity of this presumption is inspired by the analysis of
log-linear learning in [31] and will be presented in Section V.
To develop a purely decentralized policy-learning scheme in
Algorithm 2 for obtaining the social-optimal equilibrium of the
intermediate game G(x), we introduce the auxiliary state of
player m regarding context x at time slot t from [31]:

ztm(x) =
(
otm(x), atm(x), utm(x)

)
, (10)

where otm(x) ∈ {C,H,W,D} indicates the moods of player
m: content (C), hopeful (H), watchful (W ) and discontent (D).
atm(x) represents the benchmark action and utm(x) represents
the benchmark payoff adopted by player m in round t, re-
spectively. For simplicity, we omit x in the expressions for the
same game and define the following transition map of a finite
behavior state machine for each type of players:
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Algorithm 1 Policy learning at player m in the contextual
multi-player bandit game.
Initialization: Set Wm = {} and uk

m,l(x) = 0 ∀l ∈ {1, . . . , L} and
∀x ∈ X . Choose ε ∈ [0, 1]

1: for Epoch k = 1, . . . , kT do
2: Exploration phase:
3: for t = 1, . . . , f(k) do
4: Sample an arm atm ∈ {1, . . . , L} uniformly at random and

observe the feedback (xt, atm, v
t
m(at))

5: if vtm(at) 6= 0 then
6: Wm ←Wm ∪ {(xt, atm, vtm(at))}
7: Estimate the expected value of arm l = atm at xt:

µk
m,l(x

t)←
∑

(x,am,vm)∈Wm v
t
m1(am, l)1(x, x

t)∑
(x,am,vm)∈Wm 1(am, l)1(x, xt)

(7)

8: end if
9: end for

10: Trial-and-error learning phase:
11: ∀x ∈ X , construct game G(x) as in Definition 3. Namely,

∀m ∈M, l ∈ Am, fix the perturbed arm-value as µ̃k
m,l(x) =

µk
m,l(x)+ξm,l(x)/k, where ξm,l(x) is randomly sampled over

[−ξ, ξ] with 0 < ξ < 1
12: if k = 1 then
13: ∀x ∈ X , set the auxiliary state at t = 0 in (10) as

z0m(x) = (o0m(x) = D, a0m(x), u0
m(x) = 0) with a random

action a0m(x)
14: else
15: ∀x ∈ X , initialize z0m(x) with the exploitation policy in

epoch k−1 as z0m(x)=(o0m(x)=C, a∗,k−1
m (x), u0

m(x)=0)
16: end if
17: ∀am ∈Am, set the count of times for getting a content mood

with am as νkm,x(am) = 0
18: for t = 1 . . . , g(k) do
19: Update atm and ztm(xt) according to Algorithm 2 for xt

based on µ̃k
m,l(x

t), and ∀x′ 6= xt, set ztm(x′)← zt−1
m (x′)

20: Update the frequency of visits to the content states aligned
with benchmark values as

νkm,xt(a
t
m)← νkm,xt(a

t
m) + 1(otm, C)1(ut

m(xt), uk
m(xt)),

(8)
where ut

m(xt) is the observed payoff in the intermediate
game G(xt) by player m according to (6)

21: end for
22: Exploitation phase:
23: for t = 1, . . . , h(k) do
24: For xt, play a∗,km with the maximum number of state visits

according to νkm,xt(l), ∀l:

a∗,km (xt) = arg max
1≤l≤L

νkm,xt(l) (9)

25: end for
26: end for

• A content player updates its action as atm ∈ Am with a
probability:

pm(atm) =

{ ε

L− 1
, atm 6= at−1

m ,

1− ε, aTm = at−1
m .

(11)

• A hopeful player or a watchful player always plays the
previous benchmark action, i.e., atm ← at−1

m .
• A discontent player selects a new action uniformly at

random, namely, ∀atm ∈ Am, pm(atm) = 1/L.

Algorithm 2 A single round of state transition by player m in
G(x) at the k-th epoch.
Initialization: ∀l ∈ {1, . . . , L}, retrieve the fixed, perturbed arm-

value in the current context x as µ̃k
m,l(x)

1: Select atm according to state zt−1
m (x) of the player, and observe

ut
m(x) = ux

m(at) following (6)
2: if ot−1

m (x) = C then
3: if atm 6= at−1

m and ut
m(x) ≤ ut−1

m (x) then ztm(x)← zt−1
m (x)

end if
4: if atm 6= at−1

m and ut
m(x) > ut−1

m (x) then
5: Update the state ztm(x) with probability

pm(ztm(x)← (C, atm, u
t
m(x))) = εG(utm(x)−ut−1

m (x)) (12)

6: end if
7: if atm = at−1

m and ut
m(x) > ut−1

m (x) then ztm(x) ←
(H, at−1

m (x), ut−1
m (x)) end if

8: if atm = at−1
m and ut

m(x) = ut−1
m (x) then ztm(x)← zt−1

m (x)
end if

9: if atm = at−1
m and ut

m(x) < ut−1
m (x) then ztm(x) ←

(W,at−1
m (x), ut−1

m (x)) end if
10: else if ot−1

m (x) = H then
11: if ut

m(x) > ut−1
m (x) then ztm(x)← (C, at−1

m (x), ut
m(x)) end

if
12: if ut

m(x) = ut−1
m (x) then ztm(x) ← (C, at−1

m (x), ut−1
m (x))

end if
13: if ut

m(x) < ut−1
m (x) then ztm(x) ← (W,at−1

m (x), ut−1
m (x))

end if
14: else if ot−1

m (x) =W then
15: if ut

m(x) > ut−1
m (x) then ztm(x) ← (H, at−1

m (x), ut−1
m (x))

end if
16: if ut

m(x) = ut−1
m (x) then ztm(x) ← (C, at−1

m (x), ut−1
m (x))

end if
17: if ut

m(x) < ut−1
m (x) then ztm(x) ← (D, at−1

m (x), ut−1
m (x))

end if
18: else if ot−1

m (x) = D then
19: Set ztm(x) ← zt−1

m (x) when ut
m(x) = 0. Otherwise, update

ztm(x) with probability{
pm(ztm(x)← (C, atm, u

t
m(x))) = εF (utm(x)),

pm(ztm(x)← (D, at−1
m (x), ut−1

m (x))) = 1− εF (utm(x))

(13)
20: end if

With the auxiliary states defined in (10), we introduce en-
hanced trial-and-error learning from [31] in Algorithm 2. Note
that in Algorithm 2, G(u) and F (u) are strictly monotonically
decreasing linear functions for any observed utility u ∈ [0, 1],
and the conditions 0 < G(u) < 1/2 and 0 < F (u) < 1/2M
are to be satisfied (see Theorem 2 for the details).

V. ANALYSIS OF THE REGRET FOR ALGORITHM 1

With Algorithm 1, the regret is mainly due to sub-optimal ac-
tions in the exploration and the trial-and-error learning phases.
In the latter phase, each player is supposed to learn the optimal
matching policies while avoiding collisions in |X | intermediate
games following the rules defined in Algorithm 2. In each game
G(x) (x∈X ), the learning processes of all the players jointly
define a large discrete-time Markov chain over the set of all
possible auxiliary states (see also [31]). Therefore, the regret
analysis regarding Algorithm 1 is expected to mathematically
determine the regret due to the arm-value estimation in the
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exploration phase and the regret due to the sub-optimal policies
derived following Algorithm 2. For ease of exposition, we first
provide the main result of the theoretical bound on the regret
of Algorithm 1 in Theorem 1, before presenting the analytical
procedures for the two phases in concern.

Theorem 1 (Main Theorem on the Algorithm Regret). Con-
sider a multi-player bandit game with a finite set of contexts,
i.e., |X | = X , as defined in Definition 1. With T rounds of plays
and a sufficiently small policy-learning parameter ε ∈ [0, 1] in
Algorithm 1, the regret of Algorithm 1 is upper-bounded by

∆RT ≤ O(M log1+δ
2 (T )), (14)

if we set f(k) = c1, g(k) = c2k
δ (δ > 1) and h(k) = 2k,

where c1 ≥ 16L(L+η/3)
η2 with η ∈ [0, 1].

Proof Sketch. Since rtm,l ∈ [0, 1], the network-wise regret of
the exploration phase and the trial-and-error learning phase in
the k-th epoch can be easily upper-bounded by M(c1 + c2k

δ)
in the worst case, in which every player at each round in these
two phases produces the maximum regret of 1. Then, to bound
the regret in exploitation, we only need to bound the error
probability Prke of the arm-value estimation in the exploration
phase and the probability Prkl of learning sub-optimal allocation
policies in the trial-and-error learning phase. Thus, we obtain
the upper bound of the total regret of all the players in the
following form:

∆Rk ≤M(c1 + c2k
δ) +M(Prke + Prkl )c32k. (15)

The complete proof of Theorem 1 relies on the analysis of
the error probability of the exploration phase in Section V-A
and that of the trial-and-error learning phase in Section V-B.
Based on such a two-step analysis, the detail of the proof to
Theorem 1 will be given in Section V-C.

A. Error Probability of the Exploration Phase

The goal of exploration is for every player to obtain the unbi-
ased estimation of the mean values of all arms in each context
x ∈ X . Then, the total sampling period in the exploration phase
has to be sufficiently long since the expected sum of regret
incurred by the uniformly random exploration of one round for
all players can be as large as O(M). Denote Nm = |Wm| (cf.,
Line 6 of Algorithm 1) as the number of samples accumulated
by player m until the end of the current exploration phase in
Algorithm 1. We note that for a certain policy πm(x) of an
individual player m, the unbiased estimator of the reward based
on the collected reward observation Wm in Algorithm 1 can
be determined using inverse propensity scoring:

µ̂m(πm) =
1

Nm

Nm∑
i=1

1(πm(xi), aim)vim
1/L

, (16)

where 1/L represents the uniformly random action sampling.
Let µ̂im(πm) =

1(πm(xi),aim)vim
1/L . Then, we have E{µ̂m(πm)} =

E(x,rm)∼Dm{rm,πm}, and from (16),

Var
{
µ̂im(πm)

}
≤ E

{
(µ̂im(πm))2

}
= L2E

{
1(πm(xi), am,i)(v

i
m)2

}
≤ LE

{
(vim)2

}
≤ L. (17)

The analysis of the upper bound of the arm-value estimation
error relies on two inequalities [32] as follows.

Fact 1 (Bernstein Inequality). If for a sequence of random
variables Y1, . . . , YN , Pr(|Yi| ≤ c) = 1 and E(Yi) = 0, then
for any N > 0,

Pr

(
1

N

N∑
i=1

Yi ≥ η

)
≤ 2 exp

(
− Nη2

2σ2 + 2cη/3

)
, (18)

where c is a constant and σ2 = 1
N

∑N
i=1 Var(Yi).

Fact 2 (Chernoff Inequality). If for a sequence of random
variables Y1, . . . , YN , |Yi| ≤ 1, then for any N > 0 and
0 < η < 1,

Pr

(
N∑
i=1

Yi≤(1−η)E

{
N∑
i=1

Yi

})
≤exp

(
−η2E

{
N∑
i=1

Yi

}
/2

)
.

(19)

Based on (17)-(19) we obtain Lemma 1 as follows.

Lemma 1. With Algorithm 1, all the players have a sufficiently
accurate arm-value estimation after T0 explorations, with T0

given by:

T0 ≥ max

(
16LX

L+ cη/3

η2
ln

(
4ML

γ

)
, 32L ln

(
2M

γ

))
.

(20)
where γ is the pre-determined exploration error probability for
a maximum estimation error η.

Proof. For player m which has undergone at least C rounds
of valid explorations (i.e., explorations with no collisions),
the probability of not having sufficiently accurate arm-value
estimations for a non-colliding policy πm (∀m ∈ M) adopted
in the exploitation phase in Algorithm 1 is bounded by

Pr

(
sup

m∈M,πm

{
(µ̂m(πm)−E{rm,πm})>η

∣∣∣∀m : |Wm|≥C
})

(a)
≤

M∑
m=1

∑
πm∈Πm

Pr
(
µ̂m(πm)− E{rm,πm} > η

∣∣∣|Wm| ≥ C
)

(b)
≤

M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

Pr
(
µ̂m(πm)−E{rm,πm}>η

∣∣|Wm|=Nm
)

Pr(|Wm|=Nm)

Pr(|Wm|≥C)

≤
M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

Pr
(
µ̂m(πm)−E{rm,πm}>η

∣∣∣|Wm|=Nm

)
× Pr

(
|Wm|=Nm

∣∣∣|Wm| ≥ C
)
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(c)
≤

M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

e−
Nmη

2

2L+2cη/3 Pr
(
|Wm|=Nm

∣∣∣|Wm| ≥ C
)

≤2MLXe−
Cη2

2L+2cη/3

∞∑
N=C

Pr
(
|W|=Nm

∣∣∣Nm≥C)
≤ 2MLX exp

(
− Cη2

2L+ 2cη/3

)
, (21)

where Πm is the set of deterministic policies for player m and
|Πm| = LX , (a) is obtained by the union bound, (b) is obtained
following the Partition Theorem and (c) is obtained following
the Bernstein Inequality in Fact 1. To satisfy the condition of
sufficient accuracy η with an error probability γ1, we have

2MLX exp
(
− Cη2

2L+2cη/3

)
≤γ1⇒C≥ 2L+2cη/3

η2 ln
(

2MLX

γ1

)
.

(22)
Note that the above condition in (22) is obtained when the

players sample the arms uniformly at random and no collision
occurs. To obtain the condition for accumulating sufficiently
large number of valid arm observations for each player, we
denote Aim as the event that a player m observes any arm
l ∈ Am without experiencing collision at the i-th sample.
During the exploration phase, whether experiencing a collision
is independent of the context that the game is in. Then,
∀i = 1, 2, . . ., we have Pr

(
Aim
)

= (1− 1
L )M−1. For a sequence

of N i.i.d. samples {Aim}Ni=1, we have

Pr

(
∃m s.t.

N∑
i=1

Aim ≤
N

2
E{Aim}

)
union bound
≤

M∑
m=1

Pr

(
N∑
i=1

Aim ≤
N

2
E{Aim}

)
Fact 2
≤ M exp

(
−N

8
(1− 1

L
)M−1

)
. (23)

For the probability in (23) to be upper-bounded by γ2, we need

M exp
(
−N8 (1− 1

L )M−1
)
≤γ2⇒N≥8(1− 1

L )−(M−1) ln
(
M
γ2

)
.

(24)
Then, with probability (1 − γ2), we have ∀m ∈ M,∑N
i=1A

i
m ≥ N

2 E{A
i
m}. To ensure that every player has a

sufficient number of valid observations, we also need

N

2
E{Aim} ≥ C

(22)
≥ 2L+ 2cη/3

η2
ln

(
2MLX

γ1

)
⇒ N ≥ 2(1− 1

L
)−(M−1) 2L+ 2cη/3

η2
ln

(
2MLX

γ1

)
. (25)

Since for any L > 1, (1− 1
L )M−1 ≥ 1

4L , we have

N ≥ max

(
16L

L+ cη/3

η2
ln

(
2MLX

γ1

)
, 32L ln

(
M

γ2

))
.

(26)
Let the event supm,πm (µ̂m(πm)−E{rm,πm}) > η be de-

noted by A, and the event ∀m : |Wm| ≥ C be denoted by
B. Then, (21) provides the upper bound of Pr(A|B), and (23)
leads to the upper bound of Pr(B). To guarantee that all players

have satisfactory estimation errors of η for each arm, we have
the following bound:

Pr(A) = Pr(A|B) Pr(B) + Pr
(
A|B

)
Pr
(
B
)

≤ Pr(A|B) + Pr
(
B
)

= γ1 + γ2. (27)

Then, having γ1 = γ2 = γ/2, (26) guarantees that with more
than N rounds of exploration, any policy is estimated with an
error within η with probability 1− γ. This leads to (20).

From (20) in Lemma 1, we note that for an error probability
of arm-value estimation with maximum bias η, Prke = γ,
Algorithm 1 needs to undergo at least T0 rounds of exploration:

T0 = 16L
L+ cη/3

η2
ln

(
4MLX

γ

)
. (28)

If the exploration has at least c1 = 16L(L+cη/3)
η2 turns at each

epoch, then, at k-th epoch, for a maximum estimation error η
the error probability can be bounded as follows

c1k =
16L(L+ cη/3)

η2
k ≥ 16L(L+ cη/3)

η2
ln

(
4MLX

γ

)
⇒ Prke = γ ≤ 4MLXe−k. (29)

Note that with the normalized arm-values, we can simply
choose c = 1 in (29).

B. Error Probability in the Trial-and-error Phase

In addition to Lemma 1 and (29), we need to further analyze
the impact of the arm-value estimation errors on the learning
results in the trial-and-error phase. Specifically, we expect that
the optimal contextual bipartite matching policy derived based
on the biased arm-value estimation is the same as the optimal
policy derived based on the real expected arm-values. Lemma 2
confirms this presumption.

Lemma 2. Assume that the expected reward estimated by
player m for a non-colliding policy πm, µ̂m,πm(x), satisfies
|µ̂m,πm(x) − E{rm,πm |x}| ≤ η. Consider two intermediate
games (cf., Definition 3): G(x), which is constructed upon
the real expected arm-values E{rm,l|x}, and Ĝ(x), which is
constructed upon the estimated arm-values µ̂m,l, respectively.
For G(x) where Vπ(x) =

∑M
m=1E{rm,πm |x}, we denote an

optimal joint policy as π∗ and a best non-optimal joint policy
as π̃. Then, if

η <
Vπ∗(x)− Vπ̃(x)

2M
, (30)

for Ĝ(x) where V̂π(x) =
∑M
m=1 µ̂m,πm(x), we have V̂π∗(x)>

V̂π̃(x) as well.

Proof. Since L ≥ M , π∗ and π̃ must be collision-free. By
inequality construction of the condition at the beginning of
Lemma 2 and the definitions of Vπ(x) and V̂π(x), we have
(note that we omit x for conciseness)

−Mη ≤
M∑
m=1

(µ̂m,πm − E{rm,πm}) ≤Mη. (31)
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Then, for π∗ we have
M∑
m=1

µ̂m,π∗m ≥
M∑
m=1

E{rm,π∗m} −Mη = Vπ∗ −Mη. (32)

For any non-optimal policy π, its value can be bounded by the
best non-optimal policy π̃ as follows:

M∑
m=1

µ̂m,πm≤
M∑
m=1

E{rm,πm}+Mη=Vπ+Mη≤Vπ̃ +Mη.

(33)
Subtracting (32) by (33), we obtain the following inequality
with the condition η < Vπ∗ (x)−Vπ̃(x)

2M :

V̂π∗ − V̂π̃ ≥ Vπ∗ − Vπ̃ − 2Mη > 0. (34)

(34) shows that for game Ĝ(x), any optimal joint policy π∗(x)
in game G(x) also achieves strictly higher social reward than
the non-optimal policies in G(x). Therefore, a socially optimal
policy in game Ĝ(x) must also be optimal in G(x).

Lemmas 1 and 2 guarantee that as long as the estimation
error η is small enough, the true socially optimal policy can
be derived based on the biased estimation of arm-values after
sufficiently long exploration in Algorithm 1. Therefore, we
only need to examine the policy efficiency of the trial-and-
error learning phase based on the rules defined in Algorithm 2.
Regarding the intermediate game G(x) in context x, we have

Lemma 3. The social-optimal payoff by the players in game
G(x) is achieved at a pure NE.

Proof. Lemma 3 relies on the assumption of L ≥M . We note
that at epoch k, game G(x) with fixed arm values for m ∈
M, µkm,l(x), belongs to the category of one-sided matching
games with user preferences [33]. Then, by randomly ordering
the players in a list, and sequentially assigning each player in
the list their best available arm, we are able to obtain a non-
colliding allocation ak = [ak1 , . . . , a

k
M ]>. It is straightforward

to check that ∀m ∈ M, akm is a best response to the joint
actions of the other players ak−m.Thus, ak constructs a pure
NE, and we know that more than one pure NE exists in G(x).

Furthermore, with L ≥ M , player m’s better response to
ak−m can only be pulling a free arm. Indeed, a player’s better
response always leads to a Pareto improvement, since no other
players changes their payoffs. Then, we can check by contra-
diction that the socially optimal policy ak,∗ in G(x), where
V x(ak,∗) = max

a

∑M
m=1 u

x,k
m (a), is also an NE. Firstly, with

L ≥M , the optimal action ak,∗ has no collision. Otherwise,
a colliding player can always find a free arm as the better
response, which constitutes a Pareto improvement. Secondly,
at ak,∗ no player is able to find a better response. Otherwise,
at least one player m can find some free arm a′m, that leads
to a joint action a′ = (a′m, a

k,∗
−m) s.t. V x(ak,∗) < V x(a′) =∑

i 6=m u
x,k
i (ak,∗i )+ux,km (a′m), contradicting with the optimality

assumption. Therefore, by the definition of an NE, we obtain
Lemma 3.

With Lemma 3, we are left to show that the policies obtained
from Algorithm 2 converge to not only an NE, but also
the most efficient NE of the intermediate game. Note that
following the rules of state transition defined in Algorithm 2,
the state-updating dynamics of each player m jointly constitute
a large discrete-time Markov chain over the set of the joint
auxiliary states z(x) = [z1(x), . . . , zM (x)]> as defined in (10).
Following the approach of the Markov chain-based analysis for
log-linear learning in [31], we are able to examine the efficiency
of the trial-and-error learning phase in Algorithm 1 for a given
intermediate game G(x). Before proceeding, we introduce the
concepts of regular perturbation and stochastically stable states
from [31], [34] for Markov chains in Definitions 4 and 5.

Definition 4 (Regular Perturbation). Let P 0 denote the tran-
sition matrix for a stationary Markov chain over a finite state
space Z , and P ε (ε 6= 0) be a family of perturbed Markov
chains corresponding to P 0, where ε is a scalar measuring the
perturbation level. P ε is a regular perturbation of P 0 if (a)
P ε is ergodic for all sufficiently small ε, (b) lim

ε→∞
P ε(z, z′) =

P 0(z, z′), and (c) P ε(z, z′) > 0 for ε implying that ∃r(z, z′)
s.t. 0 < lim

ε→0
P ε(z, z′)/ε−r(z,z

′) < ∞. The function r(z, z′) is
known as the resistance of transition z→ z′.

Definition 5 (Stochastically Stable States). Let P ε be a regular
perturbation of P 0 and pε be its unique stationary distribution.
z ∈ Z is a stochastically stable state iff lim

ε→0
pε(z) > 0.

Recall the action updating rule for a content player in (11)
and the auxiliary state updating rules for a content/discontent
player in (12) and (13) of Algorithm 2. We obtain the unper-
turbed Markov process P 0 for the joint auxiliary states z(x) in
game G(x) by setting ε = 0 in (11), (12) and (13). Alternatively,
for a very small ε (ε > 0), we obtain the perturbed Markov
chain P ε, where the larger the exponents of ε is in (12) and
(13) (e.g., G(utm(x)−ut−1

m (x)) and F (utm(x))), the smaller the
potential transition probability of P ε is from a current joint state
to another reachable state in Algorithm 2. Therefore, we know
that the resistance of a feasible transition (cf., Definition 4) is
partially determined by the values of G(utm(x)−ut−1

m (x)) and
F (utm(x)) of each link m. This paves the way for identifying
the stochastically stable states of the perturbed Markov chain
P ε by analyzing the rooted trees spanned from the directed
graph with the vertices and edges corresponding to the joint
states and feasible transitions of the Markov chain P ε. By [31],
we know that for a perturbed Markov process P ε with a set of
stochastically stable states Z∗, there exists εα > 0 for any small
α > 0 s.t. whenever 0 < ε ≤ εα, z(t) ∈ Z∗ for at least 1− α
of all periods in the process. Therefore, it is natural to desire
that the socially optimal NE of a game G(x) (see Lemma 3)
constitute the stochastically stable states of the Markov process
defined by the rules given in Algorithm 2 when ε > 0. This is
guaranteed by the following theorem.

Theorem 2. Suppose that all players in an intermediate game
G(x) follow the updating rules in Algorithm 2 with the experi-
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mentation parameter ε and the acceptance functions F (u) and
G(u) using the same parameters α11, α21 > 0, α12 and α22,
s.t. 0 < G(u) < 1/2 and 0 < F (u) < 1/2M :{

F (u) = −α11u+ α12

G(u) = −α21u+ α22.
(35)

Then, based on (10), every stochastically stable state z∗(x) =
(z∗1(x), . . . , z∗M (x)) maximizes the social welfare of the game in
the form of

∑M
m=1 u

x
m(a∗m(x)), where a∗m(x) is the benchmark

action in z∗m(x) and constitutes an NE in G(x).

Proof. Lemma 3 guarantees that the socially optimal policy
of game G(x) is also a pure NE. Therefore, the learning
scheme defined in Algorithm 2 satisfies condition (i) of [31,
Theorem 1]. Let P ε(x) denote the family of (perturbed) Markov
processes defined in Algorithm 2 in a single epoch for context
x. Following the same approach of proving [31, Theorem
1], we only need to show that the socially optimal NE are
stochastically stable states of P ε(x), namely
(a) these social welfare-maximizing NE are aligned with some

states contained in the recurrent communication classes of
the unperturbed process P 0(x), and

(b) in the sub-graph of states constructed over the directed
transitions between the recurrence classes of P 0(x), these
NE minimize the stochastic potential (see [34] for the for-
mal definition). Namely, there exists a state-tree spanned
on each NE state that minimizes the sum resistance of
the edges (see also Definition 4) in the tree among all the
possible spanning trees in this recurrence graph.

Condition (a) relies on the identification of recurrence classes
(cf. [31, Lemma 1]). Condition (b) requires enumerating the
minimum resistance of the edges ended on different states in
the considered sub-graph (cf. [31, Lemmas 2-6]).

The proof to Theorem 2 strictly follows the approach of
proof to [31, Theorem 1], except the slight difference in
the interdependence property4 between game G(x) and the
non-cooperative game considered in [31]. In G(x), we note
that a player i can only cause another non-colliding, non-
experimenting player j’s payoff to decrease or remain the same
(both with non-zero probability) by altering its own action.
Such a “partial interdependence” property indicates that only
the sub-set of non-colliding players are interdependent on the
action of the other players due to potential collision. This
eliminates any path in a state graph of the Markov process
P ε(x) s.t. a non-colliding, non-experimenting player j’s state
transits to mood oj = H (i.e., observing reward increase) due
to another player i’s action experimentation. Therefore, we
only need to consider the O(1) probability that one player’s
experimenting action collides with another player in the original
proof to [31, Lemma 1] and obtain the following result:

4By [31], a multi-player game is interdependent if for any joint action a and
any subset of players J , there exists some player i /∈ J and two joint actions
of J , aJ and a′J , s.t. when fixing the actions of the players not in J , player
i’s payoff w.r.t. aJ and a′J are different.

Proposition 1 (Lemma 1 in [31]). Denote by D0(x) the set
of the joint states z(x) ∈ Z(x), where ∀m, om(x) = D and
C0(x) the set of z(x) where ∀m, om(x) = C. The recurrence
classes of the unperturbed Markov process P 0(x) are D0(x)
(as a single state) and every singleton z(x) ∈ C0(x).

Following the approach of the proof to [31, Theorem 1],
we denote E0(x) as the subset of C0(x) where the benchmark
actions align with a pure NE. Then, to analyze the minimum
resistance of an edge out-going from zE(x) ∈ E0(x) in the
transition graph of the recurrence states, we only need to
consider a single case regarding the path between zE(x) and
zD(x) ∈ D0(x). Due to partial interdependence in G(x), one
single player experimenting two consecutive times can only
lead to a path of transitions C → W → D due to twice
collisions with a probability of O(ε2). Since any state z(x)
with at least one player being discontent has 0 resistance to
D0(x) [31, Claim 1], this leads to a simplified version of the
proof to [31, Lemma 2] and thus the following proposition:

Proposition 2 (Lemma 2 in [31]). In the state graph of
perturbed transitions constructed on the recurrence classes of
P 0(x), ∀ze(x) ∈ E0(x), ze(x) → D(x) is an easy edge.
Namely, ze(x)→ D(x) has a minimized resistance of 2 among
all possible out-going edges from ze(x).

The rest part of the proof follows exactly the same approach
of the proof to [31, Theorem 1], where the resistance of
edges out-going from both non-equilibrium content states and
discontent states are also identified, and then the easy trees
(i.e., those with the minimum sum of resistance) are constructed
on each recurrence state. Since we do not need to make any
change to the intermediate proofs to [31, Lemmas 3-6], for
conciseness, we omit the details of the proof and suggest the
readers to refer to [31, Section 6]. Because [31, Theorem 1]
holds, by Lemma 3 we know that the stochastically stable states
of P ε coincide with the socially optimal NE strategies of the
considered game, which completes the proof to Theorem 2.

Together with Lemma 2, Theorem 2 indicates that for the
intermediate game G(x) constructed directly upon the estimated
arm-values µkm,l, we can always find an εα and a sufficiently
large number of rounds s.t. each player visits the real socially
optimal actions of the underlying bandit game for at least
1 − α of the total trial-and-error rounds. However, if G(x)
has multiple social-optimal NE5, the non-cooperative players
may reach a sub-optimal joint allocation with solely the action
selection scheme in Line 24 of Algorithm 1. We overcome this
uncertainty by replacing the estimated arm-values in G(x) with
the randomly perturbed values µ̃km,l(x) = µkm,l(x) + ξm,l(x),
where ξm,l(x) is independently sampled following a uniform
distribution over [−ξ, ξ] for context x.

Therefore, we obtain a condition that ∀l ∈ Am, |µkm,l(x) −
µ̃km,l(x)| ≤ ξ. Applying the same approach of proving

5We can construct such a game by setting the expected rewards of M arms
to be uniformly 0 < µ < 1 for each player and the other arms to be always
0, with the non-zero arm-values sampled from discrete distribution.
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Lemma 2, we can always find a sufficiently small ξ, s.t. for
the optimal policy π∗ and the best non-optimal policy π̃, the
following inequality is satisfied

ξ <

M∑
m=1

(
µkm,π∗m(x)− µkm,π̃m(x)

)
2M

. (36)

Thereby, any optimal NE policy of game G(x) becomes the can-
didate optimal NE policies of the new game G̃(x) constructed
upon the perturbed arm-value µ̃km,l(x). We consider two differ-
ent and non-colliding actions a and a′ s.t. they achieve equal
social rewards in G(x), i.e.,

∑
m∈M µkm,am =

∑
m∈M µkm,a′m .

Omitting x again, we consider the probability that a and a′

also achieve the same social reward in game G̃(x):

Pr

( ∑
m∈M

µ̃km,am =
∑
m∈M

µ̃km,a′m

)

= Pr

( ∑
m∈M

(
µ̂km,am + ξm,am

)
=
∑
m∈M

(
µ̂km,a′m + ξm,a′m

))

= Pr

( ∑
m∈M

(ξm,am − ξm,a′m) = 0

)
. (37)

Since at least one player i ∈ M adopts different actions
ai 6= a′i,

∑
m∈M

(ξm,am − ξm,a′m) is a sum of at least two

independent continuous random variables. Then, we have

Pr

( ∑
m∈M

(ξm,am − ξm,a′m) = 0

)
= 0. Therefore, the pertur-

bation ∀m, l : ξm,l(x) guarantees that the socially optimal NE
of G̃(x) is unique with probability 1. This leads to the operation
in Line 11 of Algorithm 16 and Proposition 3.

Proposition 3. With a sufficiently small perturbation parameter
ξ satisfying (36), the trial-and-error phase in Algorithm 1
reaches a unique social-optimal NE of the intermediate game
with probability 1.

We consider g(k) = T1 rounds of plays in the k-th trial-and-
error learning phase, which contains X independent perturbed
Markov processes. Now, we are ready to examine the inherent
error probability of not reaching stochastically stable states in
P ε(x). Suppose that each process P ε(x) continues for T1(x)
rounds, then we have

∑
x∈X T1(x) = T1. We denote E∗(x)

the singleton of stochastically stable state that aligns with the
unique social-optimal NE in context x. Then, with Line 24 of
Algorithm 1, the probability of players selecting optimal actions
in the exploitation phase is determined by the frequency that
∀x ∈ X : E∗(x) are visited. We denote Ax as the event that for
context x the optimal policy is adopted after the trial-and-error

6Since the gaps between the optimal and the secondary socially optimal
rewards is not known in advance, we adopt a decaying factor 1/k for the
perturbation in Algorithm 1.

phase and A the event that for all contexts the optimal policies
are adopted. Then, we have

Pr(A) = 1− Pr
(
A
)

≥ 1− Pr

(
∪
x∈X

Ax

)
union bound
≥ 1−

∑
x∈X

Pr
(
Ax
)
. (38)

To bound Pr
(
Ax
)
, we apply the approach of analyzing the

accumulated weights of random walks on general (irreversible)
finite-state Markov chains from [35]. At epoch k, with the
initialization step in Line 12 of Algorithm 1, the trial-and-error
learning process for a game G(x) constitutes a random walk
of T1(x) steps with an arbitrary initial distribution φ(x) over
the states on the Markov process P ε(x). Let 1(zt(x), E∗(x))
indicate that the stationary stable state E∗(x) is visited at
the t-th sample in the subsequence of plays corresponding to
G(x). Let αx denote the expected frequency of not visiting
the stable state. Then, the stationary distribution of P ε(x) is
ψx(E∗(x)) = 1−αx. We can treat 1(zt(x), E∗(x)) as a weight
function of the random walk, s.t. the expected total weight is

E

 1

T1(x)

T1(x)∑
t=1

1(zt(x), E∗(x))

 = 1− αx, (39)

as T1(x)→∞.
According to (9), we know that an optimal NE is guar-

anteed to be played during the exploration phase when
the majority of trial-and-error learning plays visit E∗(x).
Namely, Pr(Ax) is larger than the probability of the event∑T1(x)
t=1 1(zt(x), E∗(x)) ≥ T1(x)/2. Equivalently, we obtain

Pr
(
Ax
)

= 1−Pr(Ax) ≤ Pr

L1(x)∑
t=1

1(zt(x), E∗(x)) ≤ T1(x)

2

.
(40)

Then, following [35, Theorem 3.1], we have

Pr
(
Ax
) (a)

≤ Pr

L1(x)∑
t=1

1(zt(x), E∗(x))≤(1−ρ)ψx(E∗(x))T1(x)


≤ cx‖φx‖ψx exp

(
−ρ2ψx(E∗(x))T1(x)

72τx( 1
8 )

)
, (41)

where (a) follows (40) by setting (1 − ρ)ψx(E∗(x)) ≥ 1
2 ,

‖φx‖ψx ,
√∑

z(x)∈Z(x)
ψ2
x(z(x))
φx(z(x)) , and τx( 1

8 ) is the mixing
time of the Markov process P ε(x) for an accuracy of 1/8
(see [35, Theorem 3.1]). By selecting a sufficiently small ε for
each P ε(x), we are able to adopt a unique target stable proba-
bility ∀x ∈ X : ψx(E∗(x)) ≥ ψ, where ψ is a constant. We note
that the right-hand side of (41) is a monotonically decreasing
function of ψx(E∗(x)). Then, we can set ψx(E∗(x)) = ψ. To
ensure 0 < ρ < 1, from (1 − ρ)ψ ≥ 1

2 we obtain ρ ≤ 1 − 1
2ψ

and ψ > 1
2 . Then, we can choose ρ = 1− 1

2ψ and obtain

Pr
(
Ax
)
≤ cx‖φx‖ψx exp

(
−

(1− 1
2ψ )2ψT1(x)

72τx( 1
8 )

)
. (42)
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We know that (1− 1
2ψ )2ψ is a monotonically increasing

function if ψ > 1
2 . Denote cmax

X = max
x∈X

cx‖φx‖ψx , and

T1(x) = ω(x)T1, where
∑
x∈X

ω(x) = 1. Then, for ψ > 1
2 , the

right-hand side of (42) monotonically decreases w.r.t. ψ. Then,
we can pick ψ≥ 2

3 (consequently, ρ≤ 1
4 ), and obtain

Pr
(
Ax
)
≤ cx‖φx‖ψx exp

(
−
ψ − 1 + 1

4ψ

72τx( 1
8 )

T1(x)

)

≤ cmax
X exp

(
− ω(x)T1

1728τx( 1
8 )

)
. (43)

Then, by (38) and (43) we know that the error probability after
running g(k) = c2k

δ rounds of trial-and-error learning is

Prkl ≤ cmax
X

∑
x∈X

exp

(
− ω(x)T1

1728τx( 1
8 )

)
≤ Xcmax

X exp

(
− ω(x)

1728τx( 1
8 )
c2k

δ

)
, (44)

where x = arg minx ω(x)/τx( 1
8 ), and by construction of

Algorithm 1 we have T1 = c2k
δ . Again, since the right-hand

side of (42) is a monotonically decreasing function, we can
always find an epoch k ensuring that the upper bound of Prkl
shrinks to a sufficiently small value.

C. Regret Bound of Algorithm 1

Now, we have the probabilities of errors propagated from
the exploration phase, i.e., Prke and the learning phase i.e., Prkl
bounded by (29) and (44), respectively. Thereby, we are ready
to provide the formal proof to Theorem 1 in the following
discussion. We assume that the mild conditions such as the
condition of discernible arm-values in Lemma 2 are satisfied
by the considered contextual bandit game. Recall that we set
in Algorithm 1 f(k) = c1k, g(k) = c2k

δ and h(k) = c32k in
each epoch of the learning process. We suppose that the total
number of epoch is K, s.t.

T ≥
K−1∑
k=1

(c1k+c2k
δ+c32k) ≥

K−1∑
k=1

c32k ≥ c3(2K−2). (45)

Then, by taking logarithm to both sides of the inequality in
(45), we can derive the logarithmic upper bound of K as K ≤
log2(T/c3+2). The total regret incurred by the learning scheme
in Algorithm 1 is composed of three parts, namely, the regret
due to action exploration, trial-and-error learning and due to
sub-optimal (erroneous) policies in the exploitation phases. We
note that for each round of play the total regret of the M players
could be as large as M . Then, we obtain the regret bound of a
single epoch in the form of (15), namely,

∆Rk ≤M(c1 + c2k
δ) +M(Prke + Prkl )c32k

≤M(c1+c2k
δ)+M

(
4MLXe−k+Xcmax

X e
− ω(x)c2k

δ

1728τx( 1
8
)

)
c32k.

(46)

We note that with δ > 1 there exists an epoch k0, s.t.
∀k ≥ k0, exp

(
− ω(x)

1728τx( 1
8 )
c2k

δ−1
)
≤ 1/e. Let A0 = 4MLX+

Xcmax
X . From (46) we obtain that with β = 2

e < 1, for k > k0

∆Rk ≤M(c1 + c2k
δ) +M

(
4MLX +Xcmax

X
)
c3e
−k2k

≤M(c1 + c2k
δ) +A0c3Mβk, (47)

Since the second term of the right-hand side of (47) vanishes
exponentially with k, we obtain that for some constant C
representing the constant regret until the first k0 epoch,

∆RT =

K∑
k=1

∆Rk

≤ C +M

K∑
k=k0+1

c1 + c2M

K∑
k=k0+1

kδ +A0c3M

K∑
k=k0+1

βk

(a)
≤ C + c1M log2

(
T

c3
+ 2

)
+A0c3M

1− βK+1

1− β

+ c2M log1+δ
2

(
T

c3
+ 2

)
(b)
≤ C1+c1M log2

(
T

c3
+ 2

)
+c2M log1+δ

2

(
T

c3
+ 2

)
, (48)

where (a) is obtained by replacing K with log2(T/c3 +2), and
(b) is obtained by replacing C with C1 = C + A0c3M

1−β . Then,
(48) completes the proof to Theorem 1.

Remark 1 (Computational Complexity of Algorithm 1). In
addition to the regret bound given by (48), We can also examine
the computational complexity of Algorithm 1 in a single time
slot. The one-step action perturbation (Line 1) and auxiliary
state transition (Lines 2-21 in Algorithm 2) are completed in
constant time. Then, it suffices to compare the computational
complexity of one single round in the exploration phase, the
trial-and-error phase and the exploitation phase, respectively.
The expected arm-value estimator is updated in constant time
in a given time slot of the exploration phase (see (7) or Lines 5-
8 of Algorithm 1). For one round in the trial-and-error phase,
it may take O(XL) for a link to construct the intermediate
game and the corresponding auxiliary states (Lines 11-16 of
Algorithm 1) at the beginning of the phase. Finally, for the
exploitation phase, finding the maximum number of auxiliary-
state visits takes a player O(L) in one round (see (9)).

Additionally, the space complexity of Algorithm 1 in one
single round is O(XL) for the arm-value estimator record-
keeping (see (7) with respect to different contexts) in the
exploration phase and O(XL) for record keeping with respect
to the frequency of visiting the content states in the trial-
and-error phase and the exploitation phase (see (8)). With
such complexity levels, the proposed algorithm is suitable for
resource-limited IoT devices.

VI. ADAPTATION TO UNOBSERVABLE CONTEXTS

Now, we consider that the contexts are no longer re-
leased/observable at the beginning of each time slot. This is
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corresponding with the situation when no energy detector or
primary base station feedback is available to the IoT devices.
Since the intermediate game G(x) cannot be established for
discernible context x in this situation, policy learning in the
trial-and-error phase is reduced to one single perturbed Markov
chain. Recall that the joint distribution of the state and the
values of each arm follows (x, rm) ∼ Dm. Therefore, learning
arm-selection without discerning the underlying context x is
reduced to a normal MP-MAB, where the value distribution of
each arm follows the marginal distribution over rm ∼ Dm,rm :
pm(rm) = Ex{prm|x(rm|x)}. Without making any significant
change to the proposed algorithm, we define a modified regret
in Definition 6 (cf., Definition 2):

Definition 6 (Modified Regret). Let the expected reward of
a policy π without discerning x be denoted by V (π) =

Ert∼Dm,rm

{∑M
m=1 v

t
m(π)

}
. For the series {rt}Tt=1, drawn

from the distribution Dm,rm , the expected regret of algorithm
B = {π̃1, . . . , π̃T } with respect to a policy π is

∆R(B, π, T ) = TV (π)− E

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (49)

The regret of algorithm B with respect to policy space Π is

∆R(B,Π, T ) = sup
π∈Π

TV (π)− E

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (50)

Compared with Definition 2, the regret defined in Defini-
tion 6 will lead to a sub-optimal allocation solution because
(50) requires algorithm B to produce a consistent joint policy
for all different context x. Based on the modified regret
in Definition 6, for an arbitrary, individual policy πm that
results in no collision, the true expected reward becomes
E(rm)∼Dm,rm {rm,πm}. By the law of unconscious statistician
we have E(rm)∼Dm,rm {rm,πm} = E(x,rm)∼Dm{rm,πm}. Fol-
lowing our discussion in Section V-A, the unbiased reward esti-
mator based onWm is now µ̂m(πm) = 1

Nm

∑Nm
i=1

1(πm,a
i
m)vim

1/L .
Then, (17) still holds for the variation of the new estimator and
for (21) we have a slightly different bound

Pr

(
sup

m∈M,πm

{
(µ̂m(πm)−E{rm,πm})>η

∣∣∣∀m : |Wm|≥C
})

≤ 2ML exp

(
− Cη2

2L+ 2cη/3

)
, (51)

since the learning algorithm no longer discerns the underlying
context x. Subsequently, for an exploration phase that lasts for
c1k rounds in epoch k, we have a new probability bound for
the exploration error:

Prke = γ ≤ 4MLe−k. (52)

Then, the inequality in Lemma 1 becomes T0 ≥
max

(
16LL+cη/3

η2 ln
(

4ML
γ

)
, 32L ln

(
2M
γ

))
. Therefore, keep-

ing the same value of f(k) = c1 for the exploration phase
still guarantee the accuracy of arm-value estimator under the

Algorithm 3 Modified exploration phase for player m with
non-observable context at the k-th epoch.

1: for t = 1, . . . , f(k) do
2: Sample an arm atm ∈ {1, . . . , L} uniformly at random and

observe the feedback (atm, v
t
m(at))

3: if vtm(at) 6= 0 then
4: Wm ←Wm ∪ {(atm, vtm(at))}
5: Estimate the expected value of arm l = atm:

µk
m,l ←

∑
(am,vm)∈Wm v

t
m1(am, l)∑

(am,vm)∈Wm 1(am, l)

6: end if
7: end for

marginal distribution. This leads to the modified exploration
phase in Algorithm 3.

Thanks to the phase-based structure of the learning scheme,
we are able to isolate the trial-and-error phase from the explo-
ration phase for arm-value estimation. When the arm-values of
the unique intermediate game G for each epoch is provided by
Algorithm 3, it is straightforward to prove that Theorem 2 and
Proposition 3 still hold with Algorithm 2. The only difference
lies in that the multiple sub-events Ax in (38) is now replaced
by a single event A. Therefore, without any modification to the
discussion of regret bound in Section V-C, we can show that
Theorem 1 still holds with exactly the same form of bound:

∆RT ≤ C1+c1M log2

(
T

c3
+2

)
+c2M log1+δ

2

(
T

c3
+2

)
= O(M log1+δ

2 (T )). (53)

VII. SIMULATION RESULTS

A. Evaluation of the Proposed Algorithm

We first demonstrate the efficiency of Algorithm 1 using a
toy-like example (for convenience of illustration) of a contex-
tual MP-MAB setup of 2 players, 3 arms and 3 contexts, where
for each player, the contexts and arm values are jointly sampled
from discrete uniform distributions. For comparison, we imple-
ment two categories of non-contextual algorithms, the “Musical
Chairs” (MC) algorithm [36] and its variation “SIC-MMAB”
(i.e., Synchronisation Involves Communication in Multiplayer
Multi-Armed Bandits) algorithms [37] and another three-phase-
epoch-based decentralized learning algorithm, the Game of
Thrones (GoT) algorithm [38]. We also adopt the Hungarian
algorithm to indicate the ground-truth socially optimal arm-
allocation with a centralized allocator7. In the first experiments,
we adopt the main parameters for the trial-and-error learning
algorithm as Table I.

Figure 2(a) provides an intuitive illustration on the evolu-
tion of the players’ average rewards as the bandit algorithms
progress over time. In Figure 2(a), the curves marked as “Static
Hungarian” indicate the expected rewards of each individual
players (Figure 2(a)) when the true social-optimal allocation
is adopted. Figure 2(b) shows the comparison of the average

7The source code and configurations of our experiments can be found at
https://github.com/wbwang2020/MP-MAB.
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TABLE I
MAIN PARAMETERS OF ALGORITHM 1 USED IN THE EXPERIMENTS

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
ε 0.01 ξ 0.001 δ 1 c1 100 c2 200 c3 100

α11 −0.12 α12 0.15 α21 −0.35 α22 0.4 Reward range [0, 1]
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Fig. 2. (a) Average payoff of individual players with respect to time. (b) Average regrets of plays vs. different time horizons T . (c) Regret evolution with
respect to the total number of plays T .

regret over different time horizon for the proposed trial-and-
error learning algorithm, the GoT algorithm, the MC algorithm
and the SIC-MMAB algorithm. In this experiment, for the same
sequence of context-arm-value sampling with a total rounds
of T , the bandit game is repeatedly played for 200 times
with each algorithm. The shaded areas around the solid curves
indicates the empirical performance variation during the Monte
Carlo simulations. The gap between the regrets of trial-and-
error learning and the other algorithms clearly indicates that
the proposed algorithm is able to better adapt to the stochastic
evolution of the contextual dimension.

Figure 2(c) compares the evolution of the average regrets of
trial-and-error learning, MC and the GoT algorithm [38] in a
slightly larger problem with 5 arms, as the total number of plays
(horizons) T increases. The dashed curve “O(M logδ2(T ))” rep-
resents a heuristic regret bound in the same form as (48), where
the heuristic bound has a set of parameters as c1M = 200,
c2M = 40 and C1 = 0 for the considered game. Apart from
the similar finding that the proposed learning-based algorithm
achieves a better performance than MC, it is worth noting from
the simulation result that the proposed trial-and-error learning
algorithm has a much faster convergence rate than GoT.

B. Algorithm Evaluation in Heterogeneous IoT over Shared
Bandwidth

Now, we apply the proposed channel allocation algorithm to
the simulated scenario of an ad-hoc IoT network underlaying
over the spectrum bands licensed to a cellular primary network.
We perform a series of simulations with the focus on the
following measurements: (a) the sum of the normalized link
data rates (i.e., rewards measured in achievable throughput),
(b) the frequency of collision and channel-switching during
policy learning and (c) the scalability of the proposed al-
gorithm. Throughout the simulations, we consider that the

channel statistics are unknown and heterogeneous with respect
to different IoT links. We also consider that different levels
of interference from the primary transmission is caused by a
number of primary users randomly occupying and leaving the
spectrum. Correspondingly, the contexts of the mapped MP-
MAB reflect the IDs and the power levels of different licensed
users. We consider that a fixed number of randomly distributed
IoT devices move in random and slow motion (e.g., following
a Gauss-Markov mobility model [39]) and underlay over the
frequency of the primary users for their own transmission. For
the IoT network, the entire spectrum is divided into a fixed
number of logical channels8.

In Figure 3, we demonstrate the simulation results for a
setting of 10 IoT devices over 12 logical channels of the
bandwidth, which is randomly accessed by 3 licensed users of
2 power levels. In addition to the two categories of reference
MP-MAB algorithms, i.e., MC and GoT, we also compare
the proposed algorithm with another state-of-the-art MP-MAB
algorithm based on channel swapping, i.e., “Stable Orthogonal
Channel (SOC)” allocation [11]. Compared with MC, SOC is
able to address the heterogeneous distribution of arm-values
in a non-contextual setting, while it aims to achieve stable
non-colliding allocation instead of social-optimal network per-
formance as with GoT. Figure 3(a) clearly shows that our
proposed scheme achieves the best performance out of the 4
algorithms. Figure 3(b) indicates that such better performance
of the proposed algorithm is achieved at the cost of slightly
more collisions, due to more frequent policy explorations with
respect to the contexts over time.

Furthermore, it is worth noting from Figure 3(c) that by

8For instance, in NB-IoT-like networks, this could be implemented by
grouping the OFDM symbols into a fixed number of L available resource
blocks. In each physical resource block a device experiences independent path
loss and shadow fading, but faces the stochastic interference of the same
transmit-power level from the underlying UE transmission in the macrocell.
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Fig. 3. (a) Average sum of normalized rates over time with respect to operational horizons. (b) Accumulated collisions among IoT devices with respect to time
horizons. (c) Accumulated channel switching counts among IoT devices with respect to time horizons.
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Fig. 4. (a) Average sum of normalized rates over time with respect to network size. (b) Accumulated collisions among IoT devices with respect to network
size. (c) Accumulated channel switching counts among IoT devices with respect to network size.

considering the influence of contexts, trial-and-error learning
experiences more frequent channel switching than the non-
contextual algorithms (i.e., MC and SOC). More specifically,
the switching frequency measures the consistency of action-
taking against different context by different algorithms. The
lower the frequency, the higher the policy consistency is across
different contexts. This is in accordance with our discussion
in Section VI, that the contextual MP-MAB algorithm is able
to provide more flexible policies to gain better network per-
formance than the normal MP-MAB algorithms, which blindly
choose the same policy for different contexts. However, we
note that GoT has significantly higher collision frequency and
channel switching frequency. This indicates that trial-and-error
learning has a significantly higher convergence rate than GoT,
even when the size of the auxiliary-state transition graph (see
also our discussion in Section V-B) for policy learning of
GoT is smaller than our proposed algorithm due to ignoring
the contexts. We believe this is the main reason for GoT to
experience excessive collisions in Figure 3(b) during the same
time horizon T . In other words, with the existence of contexts,
GoT needs a much longer policy-learning phase (equivalently,
a larger c2) than trial-and-error learning to achieve a better
performance than MC.

Finally, we examine the scalability of different algorithms
with respect to the network size in Figure 4, for which we
fix the horizon of simulations to be 4 × 105 rounds for
different network sizes varying from 5 links to 30 links.
For for each epoch in trial-and-error learning and GoT, the
length of the perturbation-based learning phase is set to start
with c2 = 3 × 103 for a network of 5 nodes and then
increase proportionally as the network size grows. As shown
in Figures 4(b) and 4(c), the proposed trial-and-error learning
algorithm and GoT experience more collisions than MC and
SOC, as the network size increases. This is mainly due to
both the significantly longer policy exploration and the larger
auxiliary state space as the network size increases. Again, the
GoT algorithm needs significantly larger number of rounds
to achieve the same level of performance as MC and SOC
when the network size increases. This is mainly due to both
the significantly longer policy exploration (i.e., controlled by
parameter f(k) = c1) and the larger auxiliary state space
(i.e., controlled by parameter g(k) = c2k

δ) as the network
size increases. Also, GoT needs a significantly larger number
of rounds to achieve the same level of performance as MC
and SOC when the network size increases. As a result, it
may not scale well with the network size. Comparatively, our

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3119204

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



proposed algorithm is able to achieve the better performance
(see Figure 4(a)) than the other reference algorithms at an
acceptable cost of more frequent collisions (see Figure 4(b))
due to a longer learning phase.

VIII. CONCLUSION

In this paper, we have proposed a decentralized, epoch-based
channel-allocation algorithm based on trial-and-error learning
for IoT networks underlaying over the bandwidth shared by
primary users. The proposed algorithm exploits the information
of primary transmissions in a framework of contextual multi-
player, multi-armed bandits. It guarantees socially optimal
performance through repeatedly constructing intermediate non-
cooperative games for performing decentralized policy learning
between the phases of channel-quality exploration and pol-
icy exploitation. The proposed algorithm efficiently addresses
the situation of time-varying channels with underlying unpre-
dictable interference from the licensed transmissions. Theoret-
ical analysis proves that the proposed policy-learning scheme
is able to achieve the optimal regret in O(M log1+δ

2 T ) (δ > 0)
for a contextual multi-player bandit game of M players along
a time horizon of T . Our proposed algorithm is especially
appropriate for deployment in infrastructure-less networks with
rigid constraint on communications between links. Particularly,
the only information needed by the algorithm is the inter-link
collision states over channels from the receiving device’s feed-
back. The simulation results show that the proposed algorithm
is able to achieve better performance than a number of state-
of-the-art reference schemes when the IoT network underlays
on realistic channels of a licensed cellular network.
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[4] I. Giivenç and U. C. Kozat, “Impact of spreading on the capacity
of neighboring femtocells,” in IEEE 20th International Symposium on
Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, Sep.
2009, pp. 1814–1818.

[5] L. Zhou, “A survey on contextual multi-armed bandits,” arXiv preprint
arXiv:1508.03326, 2015.

[6] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement
learning for real-time optimization in nb-iot networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1424–1440, Jun. 2019.

[7] Y. Liu, C. Yuen, X. Cao, N. U. Hassan, and J. Chen, “Design of a scalable
hybrid mac protocol for heterogeneous m2m networks,” IEEE Internet
Things J., vol. 1, no. 1, pp. 99–111, Feb. 2014.

[8] E. Hegazy, W. Saad, and M. Shokair, “An efficient proposed mac protocol
for m2m networks,” Wirel. Pers. Commun., vol. 96, no. 2, pp. 2253–2269,
may 2017.

[9] W. F. Fihri, F. Salahdine, H. E. Ghazi, and N. Kaabouch, “A survey on
decentralized random access mac protocols for cognitive radio networks,”
in International Conference on Advanced Communication Systems and
Information Security (ACOSIS), Marrakesh, Morocco, Oct. 2016.

[10] G. Smart, N. Deligiannis, R. Surace, V. Loscri, G. Fortino, and Y. An-
dreopoulos, “Decentralized time-synchronized channel swapping for ad
hoc wireless networks,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp.
8538–8553, Oct. 2016.

[11] S. J. Darak and M. K. Hanawal, “Multi-player multi-armed bandits for
stable allocation in heterogeneous ad-hoc networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2350–2363, Oct. 2019.

[12] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “Em-mac: A dynamic
multichannel energy-efficient mac protocol for wireless sensor networks,”
in Proceedings of the Twelfth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, ser. MobiHoc ’11. New York, NY:
Association for Computing Machinery, May 2011.

[13] M. Zandi, M. Dong, and A. Grami, “Distributed stochastic learning and
adaptation to primary traffic for dynamic spectrum access,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 1675–1688, Mar. 2016.

[14] Y. Xue, P. Zhou, T. Jiang, S. Mao, and X. Huang, “Distributed learning
for multi-channel selection in wireless network monitoring,” in 2016 13th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), London, Britain, 2016, pp. 1–9.

[15] H. Tibrewal, S. Patchala, M. K. Hanawal, and S. J. Darak, “Multiplayer
multi-armed bandits for optimal assignment in heterogeneous networks,”
arXiv preprint arXiv:1901.03868, 2019.

[16] Y. Xue, P. Zhou, S. Mao, D. Wu, and Y. Zhou, “Pure-exploration bandits
for channel selection in mission-critical wireless communications,” IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 10 995–11 007, 2018.

[17] Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sensing for multi-
channel opportunistic access: structure, optimality, and performance,”
IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5431–5440, Dec.
2008.

[18] P. Zhou, Q. Wang, W. Wang, Y. Hu, and D. Wu, “Near-optimal and prac-
tical jamming-resistant energy-efficient cognitive radio communications,”
IEEE Trans. Inf. Forensics Security, vol. 12, no. 11, pp. 2807–2822, 2017.

[19] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4 – 22, Mar. 1985.

[20] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5667–
5681, Nov. 2010.

[21] ——, “Cooperative game in dynamic spectrum access with unknown
model and imperfect sensing,” IEEE Trans. Wireless Commun., vol. 11,
no. 4, pp. 1596–1604, Apr. 2012.

[22] S. M. Zafaruddin, I. Bistritz, A. Leshem, and D. Niyato, “Distributed
learning for channel allocation over a shared spectrum,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2337–2349, Oct. 2019.

[23] N. Nayyar, D. Kalathil, and R. Jain, “On regret-optimal learning in
decentralized multiplayer multiarmed bandits,” IEEE Control Netw. Syst.,
vol. 5, no. 1, pp. 597–606, Mar. 2018.

[24] L. Besson and E. Kaufmann, “Multi-player bandits revisited,” arXiv
preprint arXiv:1711.02317, 2017.

[25] N. Modi, P. Mary, and C. Moy, “Qos driven channel selection algorithm
for cognitive radio network: Multi-user multi-armed bandit approach,”
IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 1, pp. 49–66, 2017.

[26] P. Zhou and T. Jiang, “Toward optimal adaptive wireless communications
in unknown environments,” IEEE Trans. Wireless Commun., vol. 15, no. 5,
pp. 3655–3667, 2016.

[27] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient optimal learning for contextual bandits,” in Pro-
ceedings of the 27th Conference on Uncertainty in Artificial Intelligence.
Arlington, VA: AUAI Press, Jul. 2011, pp. 169–178.

[28] W. Lee and I. F. Akyildiz, “Spectrum-aware mobility management in
cognitive radio cellular networks,” IEEE Trans. Mobile Comput., vol. 11,
no. 4, pp. 529–542, Apr. 2012.

[29] M. R. Sama, S. Beker, W. Kiess, and S. Thakolsri, “Service-based slice
selection function for 5g,” in IEEE Global Communications Conference,
Washington, DC, Dec. 2016.

[30] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-
armed bandits with side information,” in Advances in neural information
processing systems, Vancouver, B.C., Canada, Dec. 2008, pp. 817–824.

[31] B. S. Pradelski and H. P. Young, “Learning efficient nash equilibria in
distributed systems,” Games Econ. Behav., vol. 75, no. 2, pp. 882 – 897,
Jul. 2012.

[32] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3119204

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



[33] A. Hylland and R. Zeckhauser, “The efficient allocation of individuals to
positions,” J. Polit. Econ., vol. 87, no. 2, pp. 293–314, Apr. 1979.

[34] H. P. Young, “The evolution of conventions,” Econometrica, vol. 61, no. 1,
pp. 57–84, Jan. 1993.

[35] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher, “Chernoff-
Hoeffding Bounds for Markov Chains: Generalized and Simplified,”
in 29th International Symposium on Theoretical Aspects of Computer
Science, vol. 14, Paris, France, Feb. 2012, pp. 124–135.

[36] J. Rosenski, O. Shamir, and L. Szlak, “Multi-player bandits–a musical
chairs approach,” in International Conference on Machine Learning, New
York, NY, Jun. 2016, pp. 155–163.

[37] E. Boursier and V. Perchet, “Sic-mmab: Synchronisation involves com-
munication in multiplayer multi-armed bandits,” in Advances in Neu-
ral Information Processing Systems, Vancouver, Canada, Dec. 2019, p.
12071–12080.

[38] I. Bistritz and A. Leshem, “Distributed multi-player bandits - a game of
thrones approach,” in Advances in Neural Information Processing Systems
31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 7222–7232.

[39] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wirel. Commun. Mob. Comput., vol. 2, no. 5, pp.
483–502, Sep. 2002.

Wenbo Wang (S’13-M’17) received the Ph.D. de-
gree in Computing and Information Sciences from
Rochester Institute of Technology, Rochester, NY,
USA, in 2016. He is currently a Research Fellow
with the Faculty of Engineering, Bar-Ilan Univer-
sity, Israel. Before that, he was with the School of
Computer Science and Engineering, Nanyang Tech-
nological University, Singapore. His research interests
include machine learning and mechanism design for
multimedia wireless networks and Internet of Things
(IoT).

Amir Leshem (Senior Member, IEEE) received his
B.Sc. (Cum Laude) in mathematics and physics,
his M.Sc. (Cum Laude) in mathematics, and his
Ph.D. in mathematics all from the Hebrew University,
Jerusalem, Israel, in 1986, 1990 and 1998 respec-
tively. From 1998 to 2000 he was with Faculty of
Information Technology and Systems, Delft Univer-
sity of Technology, The Netherlands, as a postdoctoral
fellow. From 2000 to 2003 he was the director of
advanced technologies at Metalink Broadband where
he was responsible for research and development of

new DSL and wireless MIMO modem technologies and served as a member
of several international standard setting groups. From 2000 to 2002 he was
also a visiting researcher at Delft University of Technology. In 2002 he joined
Bar-Ilan University where he was one of the founders of the Faculty of
Engineering and a full professor, and was head of the Signal Processing and
Communications tracks, 2002-2014 and 2014-2017 respectively. In 2009 he
spent his sabbatical at Delft University of Technology and Stanford University.
Prof. Leshem was an associate editor of IEEE Trans. on Signal Processing
2008-2011, and the leading guest editor of several special issues of the IEEE
Signal Processing Magazine and the IEEE Journal on Selected Topics in
Signal Processing. From 2017 to 2021 he was associate editor for IEEE
Trans. on Signal and Information Processing over Networks. His main research
interests include wireless networks, applications of game theory to networks,
signal, and information processing networks with applications to sensor and
social networks, multichannel wireless and wireline communication, array
and statistical signal, radio-astronomical imaging, set theory, logic and the
foundations of mathematics.

Dusit Niyato (M’09-SM’15-F’17) is currently a
professor in the School of Computer Science and
Engineering, at Nanyang Technological University,
Singapore. He received B.Eng. from King Mongkuts
Institute of Technology Ladkrabang (KMITL), Thai-
land in 1999 and Ph.D. in Electrical and Computer
Engineering from the University of Manitoba, Canada
in 2008. His research interests are in the areas of Inter-
net of Things (IoT), machine learning, and incentive
mechanism design.

Zhu Han (S’01–M’04-SM’09-F’14) received the B.S.
degree in electronic engineering from Tsinghua Uni-
versity, in 1997, and the M.S. and Ph.D. degrees in
electrical and computer engineering from the Univer-
sity of Maryland, College Park, in 1999 and 2003,
respectively. From 2000 to 2002, he was an R&D
Engineer of JDSU, Germantown, Maryland. From
2003 to 2006, he was a Research Associate at the
University of Maryland. From 2006 to 2008, he
was an assistant professor at Boise State University,
Idaho. Currently, he is a John and Rebecca Moores

Professor in the Electrical and Computer Engineering Department as well as
in the Computer Science Department at the University of Houston, Texas.
His research interests include wireless resource allocation and management,
wireless communications and networking, game theory, big data analysis,
security, and smart grid. Dr. Han received an NSF Career Award in 2010,
the Fred W. Ellersick Prize of the IEEE Communication Society in 2011, the
EURASIP Best Paper Award for the Journal on Advances in Signal Processing
in 2015, IEEE Leonard G. Abraham Prize in the field of Communications
Systems (best paper award in IEEE JSAC) in 2016, and several best paper
awards in IEEE conferences. Dr. Han was an IEEE Communications Society
Distinguished Lecturer from 2015-2018, AAAS fellow since 2019 and ACM
distinguished Member since 2019. Dr. Han is 1% highly cited researcher since
2017 according to Web of Science. Dr. Han is also the winner of 2021 IEEE
Kiyo Tomiyasu Award, for outstanding early to mid-career contributions to
technologies holding the promise of innovative applications, with the following
citation: “for contributions to game theory and distributed management of
autonomous communication networks”.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3119204

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


