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Planar Hall Effect Sensors

Configurations and Best Magnetic Resolutions:

PHE Sensor without Magnetic Flux Concentrators: 24 pT/VHz at 50 Hz.

PHE Sensor with Magnetic Flux Concentrators: 5 pT/VHz at 10 Hz.
PHE Sensor Array (4 Ellipses): 16 pT/\Hz at 100 Hz.
Gradiometer Configuration: 26 pT/mm/\Hz at 50 Hz.

Flexible PHE Sensor: Better than 200 pT/VHz at 10 Hz.
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Planar Hall Effect Sensors

Potential Areas of Applications:

Automotive Industry: Ideal for applications requiring a dynamic range
exceeding 100 Oe, with expected resolutions in the nano-tesla range,
making it suitable for advanced vehicle technologies.

Lab-on-Chip Systems: Published studies highlight the superior
performance of PHE sensors compared to previously utilized xXMR
sensors, offering enhanced capabilities for compact, integrated lab
systems.

Flexible Electronics: Highly applicable in fields such as soft robotics,
consumer electronics, healthcare devices, and more.

Strain Gauges: Have the potential to function as ultra-sensitive strain
gauges capable of detecting micro-strain variations down to a few
percent.
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AMR and PHE
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Elliptical PHE Sensors

Why Elliptical?

Stable uniform magnetization (shape anisotropy).

Low anisotropy fields (higher signal).

< R
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Flexible EPHE Sensors

Materials and Layer Stack

Permalloy (Py,Nig,Fe,o) - FM layer, due to its low MCA coefficient,
high permeability, and low coercive field.

Tantalum (Ta) - Dual purpose as a seeding layer and a capping layer.

Aluminum oxide (Al,O3) - Buffering layer.

Kapton tape- Serves as a flexible substrate.

SU-8 TF 6002 - For surface smoothening.
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Device Design

Elliptical PHE sensor - aspect ratio 1:8.
* Major axis (a) - 5 mm.

* Minor axis (b) - 625um.

Flexible substrate thickness - 125 um.

The sensor is excited by

applying ac current

between V,; and V,,,. L
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The signal is
detected between

Vy1 and V.




Fabrication Process
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Sub-200 pT Resolution of Flexible EPHE Sensors
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Flexible EPHE Sensors Under Bending Conditions

Strain Anisotropy
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Flexible E

PHE Sensors Under Bending Conditions

The Effect of Bending on the Effective Anisotropy Field

Mode Heg (Oe)
Flat 7.2
Type-A compressive > 7.8 (1)
(f) ) =~Flat after-bent 6.6 (1) eff - 5]‘1 = H(f) — H()
H - H ) eff eff
eff Flat 6.7 eff H — H + H
Type-B compressive 14.0 eff Int o
Type-B tensile 7.8
Flat after-bent 7.5
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Flexible EPHE sensors can measure both magnetic

fields and strains simultaneously under the
application of an external field.
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Multi-Functional Flexible EPHE Sensor

Can minute strain be measured with a flexible EPHE sensor without the reliance on an external magnetic field?
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Introducing a Tunable Anisotropy Landscape

E = K sin?(y — 0) + K, sin?(Z — )
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Multi-Functional Flexible EPHE Sensor

Can minute strain be measured with a flexible EPHE sensor without the reliance on an external magnetic field?

Is it feasible to fabricate a device that meets these requirements?
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Tuning the Easy Magnetization Direction

Balancing Shape and Growth Anisotropies

E = Kgsin®(a — 0) + K sin*(B — 6)
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Multi-Functional Flexible EPHE Sensor

Can minute strain be measured with a flexible EPHE sensor without the reliance on an external magnetic field?
Is it feasible to fabricate a device that meets these requirements?

What is the expected strain-gauge resolution for such a device?
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Expected Strain Gauge Resolution
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Multi-Functional Flexible EPHE Sensor

Can minute strain be measured with a flexible EPHE sensor without the reliance on an external magnetic field?
Is it feasible to fabricate a device that meets these requirements?

What is the expected strain-gauge resolution for such a device?
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Conclusions

Multi-Functional Capability: Our flexible EPHE sensors go beyond magnetic field detection, demonstrating their

ability to act as strain gauges capable of detecting micro-strain with exceptional sensitivity.

Thank youl!
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Sensitivity and Noise

Sensitivity Equivalent magnetic noise (EMN)
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Flexible EPHE Sensors Under Bending Conditions

Strain Anisotropy

G d
2R
Strain anisotropy constant: Strain anisotropy field:
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Anisotropy Landscape

The effective anisotropy (He¢f) represents the combined influence of the
sensor's intrinsic properties and external effects.

The intrinsic anisotropy (H;,¢) define the sensor's fundamental and
stable anisotropic properties, which remain fixed after fabrication.

* Shape anisotropy (Hy).
* Growth-induced anisotropy (Hy).

External effects - dynamically modify the anisotropy landscape during
the sensor's operation.

* Strain-Induced Anisotropy (Hy).
E = Kssin® 9 + Kgsin® ¢ + K, sin® X

l

E = K;¢ sin?y + K, sin?X
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Flexible EPHE Sensors Under Bending Conditions

Modified Stoner-Wohlfarth model

SW Model - A theoretical model describing the behavior of single
domain particles under an external magnetic field.

Modified SW Model - Incorporates both intrinsic MA and strain-
induced anisotropy.

E = K sin? 8 + K, sin?(Z —0) — MH cos(a — 6)
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The effect of bending on the effective anisotropy field

Mode Heg (Oe)
Flat 7.2
Type-A compressive

> 7.8
17.8

Type-A tensile

___—TIat after-bent 6.6 (D)
Hég‘ Flat 6.7 Heff
Type-B compressive 14.0
Type-B tensile 7.8
Flat after-bent 7.5
HY = g, 3Y: A
eff — int _ y® D _ _ f7s

Flexible EPHE sensors can measure both magnetic
fields and strains simultaneously under the
application of an external field.
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Introducing a Tunable Anisotropy Landscape

Energy Landscape and PHE signal:

The total energy of the system is given by:
E = K¢ sin?(y — 0) + K, sin?(Z — 6)

Strain is applied solely along the principal axes (£; = 0°and X, = 90°)
to maximize its impact on the anisotropy landscape and ensure a
predictable, simplified response.
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Optimal angle for maximizing the PHE signal

The PHE signal is proportional to sin 26, and the change in the signal
due to strain is:

To maximize AVpyg, ¥ must be chosen such that the perturbation
results in the largest relative shift between 6, 1 and O yjp 2.

Through analysis, y = 22.5° is found to be the
optimal angle for the intrinsic anisotropy.
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