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Abstract—Cellular networks provide communication for dif-
ferent applications. Some applications have strict and very short
latency requirements, while others require high bandwidth with
varying priorities. The challenge of satisfying the requirements
grows in congested traffic where some packets might miss their
deadlines. Unfortunately, we prove that the problem is NP-
Hard. To overcome this, we propose a new scheduling policy for
packets with multiple priorities, latency requirements, and strict
deadlines. To alleviate the complexity, our solution incorporates
a novel time domain relaxation solved by linear programming.
Simulation results show that this method outperforms existing
scheduling strategies.

Index Terms—Joint Scheduling, channel allocation, queues,
deadline, priority, integer linear programming, linear program-
ming, URLLC, EDF.

I. INTRODUCTION

Future and 5th generation cellular networks aim to provide
communication for people, machines, and devices, known
as the Internet-of-Things. New applications such as factory
automation and intelligent transportation systems dictate a
new level of end-to-end Quality Of Service (QoS) [1], [2]
resulting in ambitious bandwidth and delay constraints. These
challenges are currently solved using three classes of traffic:
enhanced Mobile Broadband (eMBB), Massive Machine Type
Communications (mMTC), and Ultra-Reliable Low-Latency
Communications (URLLC). The eMBB requires very high
data rates with moderate latency. The mMTC requires low
bandwidth, high connection density, enhanced coverage, and
low energy consumption at the user end. The URLLC requires
extremely low delays with very high-reliability [3]. Unfortu-
nately, eMBB and mMTC packets scheduling does not support
strict deadlines. We propose to adopt a new class of packets,
extending the eMBB and the mMTC packets by adding dead-
lines. In addition, priorities are added to the packets allowing
service reliability differentiation in times of congestion. In
addition, priorities are added to the packets allowing service
reliability differentiation in times of congestion.

A. State-of-the-art Scheduling Policies

In this section, we present state-of-the-art policies. We begin
with non-preemptive policies for non-URLLC and continue
with preemptive policies for URLLC. The optimal policy
Earliest Deadline First (EDF) [4], [5], is commonly used in
real-time. The EDF selects the packet with the earliest deadline
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for transmission. Maximal Rate (MxRate) policy [5] maxi-
mizes the overall transmission rate by assigning a Resource
Block (RB) to a Mobile Subscriber (MS) that achieves the
maximum transmission rate. The Modified Largest Weighted
Delay First (M-LWDF) is a channel-aware scheduling policy
that provides a bounded packet delivering delay [5]. The
scheduler assumes a deterministic deadline for each MS and
an objective probability of meeting it. The M-LWDF assigns
an RB to an MS according to its calculated metric. The
Maximum Utility with Deadlines (MUD) policy [6], transmits
the packet with the maximal reward per unit time (reward
rate). This approach is near optimal when queues are never
empty. Many schedulers supporting URLLC and eMBB have
been proposed for 5G networks. The strict URLLC QoS
objectives force the designer to optimize RB allocation while
minimizing the loss of the eMBB throughput. In [7] the
proposed scheduler is based on utility values generated from
linear programming (LP) relaxation and the Lagrangian dual.
In [8] the problem is formulated as a non-convex optimization
problem for maximization of the weighted system throughput
subject to QoS constraints. Lately, deep learning approaches
for URLLC scheduling were introduced. These approaches
are based on a deep deterministic policy gradient (DDPG)
and its improvements [9], [10]. ”Although deep learning
algorithms have shown significant potential, the application
of deep learning in URLLCs is not straightforward” [2].

B. Contribution

In this paper, we present a model supporting the coexis-
tence of URLLC and non-URLLC packets having priorities
and deadlines in cellular networks. The policy handles these
packet classes differently. Non-URLLC is handled in a non-
preemptive manner while maximizing the packets’ Reward
Rate (RR). URLLC is handled in a preemptive manner min-
imizing the damage they cause to the already being trans-
mitted packets while meeting the stringent delay constraints.
We provide a novel and computationally efficient policy for
this case. We prove that the problem of non-preemptive
scheduling under deadlines and QoS constraints is indeed NP-
hard, and we incorporate more involved relaxations of the
NP-hard problem to make the scheduling tractable. While [6]
(MUD) provides an optimal solution for two priorities and
deterministic service time classes, our scheduler outperforms
MUD when the service time is non-deterministic (which is
typical in the wireless case). In contrast to prior work, our
solution handles both multi-user URLLC packets and non-
URLLC packets, where the non-URLLC packets have QoS
requirements, reflected by both deadlines and priorities. This
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extends the URLLC and eMBB resource allocation problem.
Similar to other resource allocation problems, it is presented
as an ILP problem. We then relax the problem into a linear
program by allowing Time Division Multiplexing (TDM) at
the sub-frame level. This work performs a parallel packet
assignment differently than sequential greedy policies that the
authors presented in [6], [11], and [12]. We use the following
notation: boldface capital letters denote matrices, boldface
lowercase letters denote vectors, and standard lowercase letters
denote scalars. The superscript AT denotes the transpose of
the matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a Base Transceiver Station (BTS) transmitting
using K channels to M Mobile Subscribers (MSs). The
traffic to the MSs contains URLLC packets and non-URLLC
packets. Each channel represents a Resource Block (RB) in
the frequency domain. The RB is composed of one frame
in the time domain. The frame itself is divided into sub-
frames and mini-slot. The RB transmission rate is frequency-
dependent and time-dependent. Therefore, the MS reports the
BTS with its current RBs transmission rates, alternatively, in
TDD networks, the BS can estimate the downlink rate based on
the uplink rate. Acquiring CSI is part of the physical layer of
any coherent communication system, and therefore, does not
result in additional overhead. It is assumed that the rates are
constant during packet transmission time. Each arriving packet
has a designated MS, a deadline, a priority, a flag specifying
whether it is a URLLC packet, and a payload. The deadline is
the delivery time of the packet. The model is hard-real-time;
i.e., the packet’s priority becomes a reward if the packet is
delivered on time.

The BTS comprises the queuing system, the scheduler, and
the transmitter. The BTS handles URLLC and non-URLLC
traffic differently, as depicted in Fig. 1. Packets that arrive
at the BTS enter the queueing system. URLLC packets are
stored in a single dedicated virtual queue, while the rest
are stored in virtual queues according to their destination.
The URLLC virtual queue is ordered by First Come, First
Served, while the scheduling policy orders the other queues.
The scheduler implements a channel aware strategy choosing
one or more packets based on their metadata for transmission.
Non-URLLC packets are served in a non-preemptive manner
and do not degrade the service to other packets. By contrast,
URLLC packets are served preemptively and can cause service
degradation to other packets due to their strict latency and
reliability requirements. The server is never idle when there
are packets in the queueing system (work conserving).

The arrival process is modeled as follows: Let Ji be the i-
th packet that reached the BTS. Ji is described by a tuple
< ai, ei,mi, li, wi, ui, ri > where ai ∈ R+ is the arrival
time and ei ∈ N is the absolute expiration time in subframes
resolution, mi ∈ {1, . . . ,M} is the designated MS, li, wi ∈ N
are the packet’s length and reward, ui is a boolean variable
specifing if it is a URLLC packet (ui = T ). ri ∈ RK×1

presents the transmission rates at the different channels at
the current time. We measure policies’ performance of non-
URLLC and URLLC differently. URLLC allows one packet

Fig. 1: Packets Flow

loss out of 105 packets and any higher loss is a failure of the
scheduler. The utility function for non-URLLC at time t is:

U(t) =
1

w(t)

∑
Ji∈St

wi. (1)

where St is the set of non-URLLC packets that were delivered
on time, until time t, and w(t) =

∑
ai≤t, ui=F

wi. Note
that different reward schemes support a range of metrics. For
example, a determiistic reward wi = 1 measures the number
of packets and setting wi = li measures the throughput.

III. MAXIMAL REWARD RATE POLICIES

In this section, we propose a greedy approach that maxi-
mizes the rate of accumulated rewards for non-URLLC traffic.
We assume that in highly congested networks, maximizing
the reward rate (RR) accumulation leads to a maximal utility.
A similar approach is already used in greedy algorithms like
MxRate. Allocating channels to packets defines the packet’s
transmission rate and total reward rate, where the total reward
rate is the sum of all channels’ reward rates according to the
channel allocation. The scheduler’s objective is to maximize
the total reward rate. Let t be the current time, and let rmini =
li
ei−t . Then, rmini is the minimal expected transmission rate
that guarantees timely delivery of packet Ji. Non-preemptive
schedulers do not degrade the transmission rate. Thus, if the
allocated transmission rate is equal to or higher than the
minimum transmission rate, the packet is delivered on time.

A. RB Allocation - Problem Formulation

Let J be a set of eligible packets for transmission, i.e.,
packets that are at the head of the virtual queues. Our goal is
to find a set Ĵ ⊆ J of packets and its RBs allocation that
has the Maximal Reward Rate (MRR). Let xi ∈ {0, 1}K×1

be a vector of optimization variables for packet Ji. RB k is
allocated to packet Ji if xi(k) = 1 and is not allocated if
xi(k) = 0. The problem can be formulated as follows:

< Ĵ , x1 . . . x|Ĵ | > = arg max
Ĵ⊆J ,x1...x|Ĵ |

{
∑
Ji∈Ĵ

wi
li

(xTi ri)}. (2a)

xTi ri ≥ rmini , i = 1 . . . |Ĵ |. (2b)
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|Ĵ |∑
i=1

xi(k) ≤ 1, k = 1 . . .K. (2c)

The objective function (2a) maximizes the total reward rate,
(2b) are the deadline constraints, and (2c) limits a RB allo-
cation to a single packet. The problem can be solved using
ILP for each of the subsets of J by selecting the subset that
has the total reward rate. The ILP formulation uses (3) as the
objective function, while preserving the linear constraints (2b)
and (2c) for each subset Ĵ ⊆ J .

< x1 . . . x|Ĵ | > = arg max
x1...x|Ĵ |

{
∑
Ji∈Ĵ

wi
li

(xTi ri)}. (3)

Next, we show that the computational complexity of solving
the above problem is NP-Hard.

Theorem 1. Let J be a set of eligible packets, K be a set of
available RBs, α ∈ R+ and, let

Xα =

x :
∑
Ji∈Ĵ

wi

li
(xTi ri) ≥ α and (2b)-(2c) hold

 (4)

then determining whether Xα = ∅ is NP-Complete.

Proof: Assume that there is a solution to the problem.
The computational complexity to verify that the solution is
valid has polynomial time. Thus, the problem belongs to the
complexity class NP. We complete the proof by proving that
the integer partition problem, which is known to be NP-
Complete [13] can be reduced to this problem. The integer
partition problem assumes a set of K integers {d1, . . . dK}.
The problem is to determine whether there is a two-set
partitioning such that the sum of the integers in both partitions
is 1

2

∑K
i=1 di (the total sum is considered to be even).

The reduction is as follows: Assume that there are two
packets J1 and J2 belonging to two different MSs. The trans-
mission rates of the RBs are ri = (d1, . . . , dK)T , rmini =
1
2

∑K
j=1 dj and wi = li = 1 for both packets (i = 1, 2).

The objective variables x1 represents the first partitioning,
i.e, if x1(k) = 1 then the k-th number is a member of
the first partition and similarily x2 represents the second
partition. Hence the partition problem is equivalent to solving
the following problem:

< x1, x2 > = arg max
x1,x2

{xT1 r1 + xT2 r2}. (5a)

xTi ri ≥
1

2

K∑
j=1

dj , i = 1, 2. (5b)

x1(k) + x2(k) ≤ 1, k = 1, . . . ,K. (5c)

Theorem 2. The computational complexity of maximizing the
total reward rate is NP-Hard.

Proof: The computational complexity of finding the maxi-
mal total reward rate for a given set of packets is NP-Hard
due to Claim 1. As a result, the computational complexity to
find the subset Ĵ ⊆ J with the maximal total reward rate is
also NP-Hard. �

B. ILP and its Polynomial Relaxation

The number of times an ILP solver runs to find the
Maximal total Reward Rate (MRR), given a set of eligible
packets J and a set of available channels K, is bounded by
O(2min{|J |,|K|}).

The computational complexity can be reduced by observing
that whenever Ĵ has no feasible solution, also every I such
that I ⊃ Ĵ has no feasible solution. Thus, computational
complexity is reduced using a pruning process on the partial
order of subsets under inclusion: if subsets are processed in
ascending order of their size, and sets that contain a subset
without a feasible solution are omitted. Another method is
to bound the size of the set; i.e., |Ĵ | ≤ p where p <
min{|J |,K}. This polynomial relaxation is marked as ILP(p).
The MUD, for example, is an ILP(1) relaxation which is a
greedy policy.

C. ILP Time Relaxation and LP Relaxation

LP solvers have polynomial computational complexity [14].
Thus, using the LP relaxation (xi ∈ [0, 1]K×1) of Equation (3)
significantly reduces the computational complexity. The results
of the optimization variables can be fractions. These fractions
define the time domain multiplexing. Each result states the
fraction of time out of a one-time unit (e.g., a frame) in this
approach. Alternatively, it defines the number of subframes
allocated to the MS of each frame. Note that the standard
relaxation using a threshold fails to deliver one of the packets
on time.

Claim 1. If the LP(2) solver assigns two packets to the same
RB and the packets are transmitted one after the other in an
EDF order, the first packet arrives on time, and two subframes
bound the second packet’s delay.

Proof: Let Ji : i ∈ {1, 2}, be two packets that are allocated
to the same RB. Let di be the time left before the expiration
time in subframes (d1 ≤ d2). Let x be the RB allocation
for J1 and let x̄ = 1 − x be the RB allocation to J2. Then
J1, dxd1e ≤ d1. J2 ends its transmission at dx̄d2e+ dxd1e ≤
x̄d2 + xd1 + 2 ≤ (x̄+ x) max{d1, d2}+ 2 = d2 + 2. �

Thus, to meet the deadline, we need to deduct two sub-
frames from the deadline of the packet with the latest ex-
piry time. As a result, the minimum rate becomes rmini =

li
max{ei−t−2,1} . The LP time relaxation conceals an inefficacy
during the period between d1 and d2. In this period, the
transmitter only uses the x̄ fraction of the RB instead of the
full capacity. Allocating the complete RB to the transmission
of J2 adds the capacity of x(d2 − d1) and if x(d2 − d1) ≥ 2
so that the deduction of two subframes from d2 is redundant.
Thus, the RB efficiency of transmitting two packets is d2

d2+2∆
where ∆ is the length of a subframe. The minimum rate can
be adjusted to:

rmin1 =


l1
d1

where x(d2 − d1) ≥ 2
l1

d1−2 where d1 > 2

∞ Otherwise
(6)

Similar to ILP(p) polynomial reduction, we propose a com-
plexity reduction by running the LP solver only on subsets of
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size 2, i.e., LP(2). Let x1 ∈ [0, 1]K×1 be the time allocation to
J1. In the optimal solution x1(k)+x2(k) = 1 since otherwise
resource k is not fully utilized. Therefore, x2(k) = 1–x1(k).
In vector form this results in x2 = 1−x1. Eq (3) now becomes:

x = arg max
x1

{w1

l1
(xT1 r1) +

w2

l2
((1− x1)T r2)}

= arg max
x1

{xT (
w1

l1
r1 −

w2

l2
r2)}. (7)

subject to: xT1 r1 ≥ rmin1 , − xT1 r2 ≥ rmin2 − 1T r2.

Alg. 1 solves (7) finds the best subset of packets that provides
the maximal total reward rate and is used by the MRR-LP(2)
policy. The complexity of Alg. 1 is composed of the number
of times the LP solver runs and the computational complexity
of a single LP solver run. The number of eligible packets
defines the number of runs of the LP solver and is bounded
by M . The policy checks the transmission’s reward rate of
at most two packets. Hence, the number of times the LP
solvers run can be bounded by O(M2). The computational
complexity of an LP solver is O((m+ n)1.5nL) [15], where
n represents the number of variables, m presents the number
of constraints, and L represents the order of space required
to input the problem. K bounds the number of variables.
Thus, the computational complexity is O(K2.5L). The overall
complexity is O(M2K2.5L). Unlike schedulers that allocate
the resources in the frequency and time domains, the MRR-
LP(2) only uses the frequency domain. This significantly
reduces the number of optimization variables and eliminates
a time limit caused by the number of variables.

IV. 5G NEW RADIO AND BEYOND: URLLC

The MRR-LP(2) policy is a non-preemptive policy designed
to support traffic with moderate delay requirements. In our
model, the URLLC traffic has a dedicated virtual queue allow-
ing enforcement of a different policy. This section presents a
policy designed to meet the strict QoS requirements of URLLC
traffic. URLLC schedulers use instant scheduling [16], i.e.,
they transmit in the next minislot while the rest of the traffic
can only use a slot level transmission. Furthermore, the traffic
is pre-emptively overlapped at the minislot timescale, resulting
in selective superposition/puncturing of non-URLLC alloca-
tions [17]. During the transmission time, the non-URLLC
traffic suffers from service degradation, which all schedulers
attempt to minimize. In our case, the target is to maximize
the reward rate under the constraints of the deadlines. Let
J1, . . . Jj be non-URLLC packets that are being transmitted.
Let Jj+1, . . . Jn be the new URLLC packets. We assume that
the BTS is designed to handle all arriving URLLC traffic. Let
xi be the assignment vector of the i-th packet to the K RBs.
The objective function for Maximizing the reward rate after
allocating the URLLC packets is:

< x1, . . . xn > = arg max
x1...xj

j∑
i=1

wi
li

(xTi ri). (8)

Fig. 2: Utility Function at different arrival rates.

The constraints are:

xTi (ri −
n∑

l=j+1

dl
di

xl) ≥ rmini , i ≤ j and |xi| > 0. (9a)

xTi ri ≥ rmini , j < i ≤ n (9b)
j∑
i=1

xi(k) ≤ 1,

n∑
i=j+1

xi(k) ≤ 1, 1 ≤ k ≤ K, (9c)

where, (9a) and (9b) guarantee that all packets meet their dead-
lines subject to the URLLC RB assignment and (9c) specify
that at most one packet out of J1, . . . Jn−1 is allocated to a
single RB. The problem is solvable by complete enumeration
in exponential time (2K|J |) since the optimization variables
are 0/1. A more straightforward approach is a policy that
minimizes the number of overlapping RBs. The policy sorts
the RBs according to the transmission rates of the URLLC
packets in descending order. Then, the policy assigns RBs to
URLLC packets until the packets’ minimal rate is achieved.
The RBs are allocated time-wise to the packet’s deadline. If the
minimum transmission rate is achieved, all other assignments
to this packet are ignored. Each RB is allocated time-wise to
the packet’s deadline. If the minimum transmission rate of a
packet is achieved, then all other assignments to this packet
are ignored. The computational complexity of this policy is
O(K(n − j) log(K(n − j))), where j is the number of non-
URLLC packets.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
policies by dealing with both URLLC and non-URLLC traffic
with priorities and deadlines. We simulated different types of
packets and MSs transmission rate. The transmission rate was
simulated by tapped-delay channels, filtered by a multi-path
Rayleigh fading channel. The parameters assumed an Urban
Macro (city scenario) with no line of sight. The transmission
tower height was 25m, and it transmitted at 42dBm. The 24
MSs were uniformly distributed in a range of 250m. We used
15 RBs with a bandwidth of 180kHz at 6GHz and a 10ms
frame, divided into ten subframes of 1ms. We simulated a
stream of packets composed of URLLC and five packet types
with different traffic shares. Each packet type had different
distributions of packet lengths, priorities, and deadlines as
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described in Table I. The stream of packets arrival process
was Poisson distributed with λa parameter varying between
4,000 and 8,000 packets per second. For each of the arrival
rates, we performed 50 independent tests. Each test had
5,000 arriving packets. We simulated six policies: MRR-LP(2),
MRR-ILP(4), i.e., MRR policy with ILP(4) solver, MxRate,
MUD, EDF, and M-LWDF, which were implemented similarly
in the following manner:
1) All policies used the URLLC preemptive policy IV.
2) A packet whose deadline expired was dropped.

The results showed that all URLLC packets arrived on time
for all scheduling schemes. Figs. 2 depicts the mean of the
utility function (1). We measured the percentage of delivered
bytes at the different arrival rates, and the results were similar
to the results of the utility function. The performance of all
policies decreases as the arrival rate increases. Both MRR-
LP(2) and MRR-ILP(4) utilities had similar performance.
These policies presented better performance than the alterna-
tives. The difference between MRR-LP(2) and MRR-ILP(4)
performance and other policies was high in heavy traffic.
MRR-LP(2) and MRR-ILP(4) performance were 25% better
than other policies. It can be seen that the proposed MRR-
LP(2) policy significantly outperforms the classical policies
(EDF, MxRate, MUD, and MLWDF) for arrival rates above
5,000 packets per second. We measured the distribution of the
number of simultaneously added packets. MRR-ILP(4) added
one or two packets in 95% of the cases, three packets in 4%
of the cases, and four packets in the rest. The reward loss of
MRR-ILP(2) was less than 1.5% relative to MRR-ILP(4).

TABLE I: Traffic Parameters

Packet Traffic Packet Len. Deadline Priority
type share distrib. (Byte) distrib. (sec) per Byte

URLLC 8% 32 0.0005 ∞
1 13.8% 64 exp(0.1) 4
2 32.2% U(64, 100) exp(0.2) 1
3 4.6% U(100, 1400) exp(0.2) 2
4 18.4% U(100, 1400) exp(0.3) 1
5 23% 1500 exp(0.4) 1

Algorithm 1 MRR-LP(2)
Input: J is a set of eligible packets for transmission.
Output: bestĴ is the subset of J with the MRR. bestX is
the allocation of packets to subcarriers.

1: procedure MRR-LP(J )
2: for i← 1 : |J | do
3: Ĵ = {Ji},
4: Allocate all available RBs to Ji.
5: if there is a feasible solution then
6: if Ĵ has higher RR than bestĴ then
7: bestĴ = Ĵ , bestX ← 1

8: for j ← i+ 1 : |J | do
9: Ĵ = {Ji, Jj}

10: Compute X by solving (7).
11: if Ĵ RR is higher than bestĴ then
12: bestĴ ← Ĵ , bestX ← X
13: return bestĴ , bestX

VI. CONCLUSION

This paper presents a novel joint scheduling and resource
allocation policy for URLLC and non-URLLC with priorities
and deadlines. The general problem is shown to be NP-hard.
We proposed a policy that performs a relaxation based on LP
with time-division multiplexing. Simulations showed that the
policy significantly outperforms the classical policies over the
5G channels and traffic model.
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