APPENDIX

VOICE-LEADING SUMS UNDER TRANSLATION AND TYMOCZKIAN PERMUTATION OF CHORDS

1. Klangs and their Cyclic Permutations

DEFINITION 1.1. Fix $a > n \ge 2$, $a, n \in \mathbb{Z}$.

We shall refer to an ordered set K of n integer classes (mod a), as a klang.

DEFINITION 1.2. Let
$$K = (\kappa_0, \kappa_1, \dots, \kappa_{n-1}), K' = (\kappa'_0, \kappa'_1, \dots, \kappa'_{n-1})$$
, be klangs. We shall write $K' = P(K)$ if $\kappa'_i = \kappa_{i+1 \pmod n}$.

Note:

- P is a bijection on the set of klangs, hence the inverse function P⁻¹ is defined.
- The group (P^q, \circ) of operations on $\{K\}$, $P^q = P \circ ... \circ P$ if $q \ge 1$, $P^q = P^{-1} \circ ... \circ P^{-1}$ if $q \le -1$, is a group of cyclic permutations.

2. Chords, their Translations and "Tymoczkian Permutations"

DEFINITION 2.1. Let $K = (\kappa_i)$ be a klang.

We shall refer to an ordered set $C = (c_i)$ of n integers as a *chord representing* K, if $c_i \equiv \kappa_i \pmod{a}$.

DEFINITION 2.2. Let $C = (c_0, c_1, ..., c_{n-1}), C' = (c'_0, c'_1, ..., c'_{n-1}),$ be chords representing the klangs K, K', respectively. We shall write:

- (A) $C' = \mathbb{T}(C)$ if $c'_i = c_i + 1$.
- (B) $C' = \mathbb{P}(C)$ if both
 - (1) K' = P(K) and
 - (2) $c_i < c'_i < c_i + a$.

Note:

- \mathbb{T} and \mathbb{P} are bijections on the set of chords, hence the inverse functions \mathbb{T}^{-1} and \mathbb{P}^{-1} are defined.
- $\mathbb{T}^t(\mathbb{P}^p(C)) = \mathbb{P}^p(\mathbb{T}^t(C)) = \mathbb{T}^t \circ \mathbb{P}^p(C)$, where $\mathbb{T}^t = \underbrace{\mathbb{T} \circ \dots \circ \mathbb{T}}_{t \text{ if } t \geq 1}$ if $t \geq 1$, $\mathbb{T}^t = \underbrace{\mathbb{T}^{-1} \circ \dots \circ \mathbb{T}^{-1}}_{t \text{ if } t \leq -1}$, and similarly for \mathbb{P}^p .
- The group (\mathbb{T}^t, \circ) of operations on $\{C\}$ is a group of translations; the group (\mathbb{P}^p, \circ) is termed in this review "Tymoczkian permutations."

3. Standard Klangs and Voice-Leading Sums

DEFINITION 3.1. We shall refer to a klang $K = (\kappa_i)$ as *standard* if there exist representatives $\bar{\kappa_i}$ of κ_i such that

$$\bar{\kappa}_0 < \bar{\kappa}_1 < \dots < \bar{\kappa}_{n-1} < \bar{\kappa}_0 + a$$
.

DEFINITION 3.2. Let $C = (c_0, c_1, ..., c_{n-1})$ and $C' = (c'_0, c'_1, ..., c'_{n-1})$ be chords. We shall write

$$\sum_{i=0}^{n-1} (c_i' - c_i) = VLS$$

and shall refer to VLS as the voice-leading sum from C to C'.

THEOREM 3.1. Let *K* be a klang.

Then the following are equivalent:

- (1) *K* is standard.
- (2) For any chord C representing K, and for any p and t, letting $C' = \mathbb{P}^p \circ \mathbb{T}^t(C)$, we have:

$$VLS = ap + nt$$
.

^{* (} \mathbb{P}^p , \circ) is not truly a group of permutations, hence "Tymoczkian permutations" is, strictly speaking, a misnomer. But since these operations are partially determined by the cyclic permutations \mathbb{P}^q (see Definition 2.2(B)), the terminological transgression, I hope, may be excused.

Proof. Since the effect of arbitrary t on VLS is obvious, we shall only consider the effect of p. Moreover, it suffices to treat p = 1, since the rest will follow by induction. That is, we only need to prove that if $C' = \mathbb{P}^1(C)$, then K is standard if, and only if, VLS = a.

Denote \bar{c}_i the representative of c_i in the interval [0, a), that is, $c_i = \bar{c}_i + m_i a$ for some integer m_i , $0 \le \bar{c}_i \le a - 1$. Using Definition 2.2(B) we have:

$$c'_{i} = \begin{cases} \bar{c}_{i+1} + m_{i}a \text{ if } \bar{c}_{i} < \bar{c}_{i+1}, \\ \bar{c}_{i+1} + (m_{i} + 1)a \text{ if } \bar{c}_{i+1} < \bar{c}_{i}. \end{cases}$$

The number of indices $i \pmod n$ such that $\bar{c}_{i+1} < \bar{c}_i$ is at least 1, and is exactly 1 if and only if there exists an index j such that $\bar{c}_j < \bar{c}_{j+1} < \cdots < \bar{c}_{n-1} < \bar{c}_0 < \cdots < \bar{c}_{n-1}$ \bar{c}_{i-1} . This last condition is easily seen to be equivalent to the condition that K is standard. This proves the theorem.