מדינת ישראל משרד החינוך

סוג הבחינה: בגרות

מועד הבחינה: קיץ תשע"ח, 2018

מספר השאלון: 43386

נספח: נייר מילימטרי (לשאלה 45)

תרגום לערבית (2)

امتحان بچروت عمليّ في البيولوجيا

ملحق: ورقة ملمتريّة (للسؤال 45)

دولة إسرائيل

و زارة التربية والتعليم

نوع الامتحان: بچروت

رقم النّموذج: 43386

ترجمة إلى العربيّة (2)

موعد الامتحان: صيف 2018

בביולוגיה

בחינת בגרות מעשית

4 בעיה

المسألة 4

سجل رقم هويتك هنا:								

הוראות לנבחן:

א. משך הבחינה: שלוש שעות.

ב. חומר עזר מותר בשימוש: מחשבון.

ג. הוראות מיוחדות:

- קרא את ההנחיות ביסודיות, ושקול היטב את צעדיך.
- רשוֹם בעֵט את כל תצפיותיך ותשובותיך (גם סרטוטים).
 - בסס את תשובותיך על תצפיותיך ועל התוצאות שקיבלת, גם אם הן אינן תואמות את הצפוי.

تعليمات للممتحن:

- أ. مدّة الامتحان: ثلاث ساعات.
- ب. موادّ مساعدة يُسمح استعمالها: آلة حاسبة.

ج. تعليمات خاصّة:

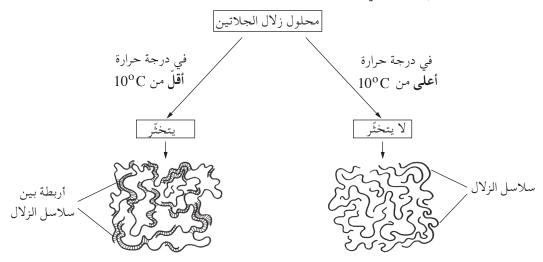
- 1. اقرأ التعليمات بتمعّن، وفكّر جيّدًا في خطواتك.
 - اكتب جميع مشاهداتك وإجاباتك (والتخطيطات أيضًا) بقلم حبر.
- اعتمد في إجاباتك على مشاهداتك وعلى النتائج التي حصلت عليها، حتى لو لم تلائم التوقعات.

التّعليمات في هذا النّموذج مكتوبة بصيغة المذكّر وموجّهة للممتحَنات وللممتحَنين على حدّ سواء.

בהצלחה!

نتمنّى لك النّجاح!

المسألة 4


في هذه المسألة ستتناول نشاط إنزيمات تحلّل الزلاليّات.

في هذا النموذج، رُقّمت الأسئلة بالأرقام 37-48. عدد الدرجات لكلّ سؤال مسجّل عن يمينه. أجب عن جميع الأسئلة في الدفتر.

القسم "أ" - تأثير مستخلص الأناناس على زلال الجلاتين

في صناعة الغذاء يُستعمل زلال الجلاتين لتحضير الحلويات، لأنّ الجلاتين يتختّر في درجة حرارة أقلّ من 10°C، ويكوّن نسيج جِلي. في درجات حرارة منخفضة، تتكوّن أربطة بين سلاسل الزلال إلى أن يتكوّن مبنًى شبكيّ، كما هو موصوف في الرسم التوضيحيّ 1، وبذلك يحدث تختُّر زلال الجلاتين.

الرسم التوضيحيّ 1: تأثير درجة الحرارة على تخثُّر محلول الجلاتين

تحضير مستخلص من ثمرة الأناناس

- ٧. بواسطة قلم للتأشير على الزجاج، اكتب "مستخلص أناناس" على أنبوب اختباريّ.
- على طاولتك مدقة وجرن وسكين وملعقة صغيرة وطبق يُستعمل لمرّة واحدة فيه قطعة من ثمرة الأناناس.
 اقطع الأناناس إلى قِطع صغيرة، وبواسطة الملعقة الصغيرة انقل قِطع الأناناس والسائل الذي في الطبق إلى الجرن.
 - κ. تحت تصرّفك وعاء فيه مياه مقطّرة.
 - اكتب "ماء" على ماصّة 5 ملل. بواسطة الماصّة انقل 5 ملل ماء إلى الجرن.
 - بواسطة المدقّة اهرس قِطَع الأناناس.
 - انقل 5 ملل ماء أخرى إلى الجرن، واستمر في الهرس إلى أن تحصل على عجين.
- على طاولتك قمع وقطعة شاش. ضع القمع في الأنبوب الاختباري "مستخلص أناناس"، وبطّن القمع بالشاش.

- ت. بواسطة ملعقة صغيرة انقل مهروس الأناناس والسائل إلى القمع الذي في الأنبوب الاختباريّ.
- انقل 5 ملل ماء إلى الجرن. استعن بالمدقة لخلط بقايا المهروس بالماء، وانقل كل محتوى الجرن إلى القمع.
 - اجمع أطراف الشاش واعصره بلطف كي تترشّح بقايا المستخلص في الأنبوب الاختباريّ.
 - ارم الشاش في وعاء النفايات.

فحص تخثّر زلال الجلاتين

- . تحت تصرّفك كأسان تُستعملان لمرّة واحدة الواحدة داخل الأخرى. اكتب على الكأس الخارجيّة: "حوض الماء 1".
- اطلب من الممتحِن ماءً ساخنًا، وحضّر في الكأس الداخليّة حوض ماء تكون درجة حرارة الماء فيه في المجال $20^{\circ} C 37^{\circ} C$.
 - احرص على أن يكون سطح الماء في حوض الماء حتّى ارتفاع الخطّ المشار إليه.
 - 1. أشر إلى ثلاثة أنابيب اختباريّة بالأحرف C ، B ، A.
 - تحت تصرّفك وعاء فيه محلول جلاتين وماصّة 10 ملل. اكتب "جلاتين" على الماصّة.
- 0. بواسطة الماصّة "جلاتين" انقل 2 ملل من محلول الجلاتين إلى كلّ واحد من ثلاثة الأنابيب الاختباريّة C-A. انتبه: عليك ضخّ محلول الجلاتين ببطء لمنع تكوُّن فقاعات هواء.
 - ملاحظة: إذا تختّر محلول الجلاتين في الوعاء توجّه إلى الممتحن.
- د. تحت تصرّفك ثلاث ماصّات 1 ملل. اكتب على إحدى الماصّات "تريبسين"، واكتب على الثانية "مستخلص أناناس"، واكتب على الثالثة "ماء".

لمعلوماتك: التريپسين هو إنزيم يحفّز تحليل زلاليّات مختلفة، منها زلال الجلاتين أيضًا، إلى سلاسل قصيرة تُسمّى پپتيدات. الپپتيدات \underline{V} تتخفّر في درجة حرارة أقلّ من 10° .

الرسم التوضيحيّ 2: تحليل الجلاتين إلى پپتيدات بواسطة إنزيمات

- التريبسين إلى محلول التريبسين التريبسين التريبسين التريبسين ، انقل 1 ملل من محلول التريبسين إلى الأنبوب الاختباري A .
- بواسطة الماصّة "مستخلص أناناس"، انقل 1 ملل من مستخلص الأناناس الذي حضّرتَه إلى الأنبوب الاختباريّ B.
 - بواسطة الماصّة "ماء"، انقل 1 ملل ماء إلى الأنبوب الاختباريّ C.
 - اخلط محتوى الأنابيب الاختباريّة بواسطة هزّها بخفّة.

- ر. تأكّد أنّ درجة الحرارة في "حوض الماء 1" الذي حضّرتَه في البند "١" هي في المجال 30°C−37°C ، وصحّعها حسب الحاجة .
 - أُدخل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 1".
 - سجّل الساعة ______، وانتظر 5 دقائق.
 - أثناء الانتظار نفِّذ تعليمات البند "‹د".
 - ‹د. على طاولتك وعاء مكتوب عليه "حوض الماء 2" فيه ماء بارد. اطلب من الممتحِن 5 مكعّبات ثلج، وأُدخِلها إلى حوض الماء.
- تأكّد أنّ درجة الحرارة في "حوض الماء 2" أقلّ من 10° . إذا كانت درجة الحرارة أعلى من 10° اسكب قليلاً من الماء الذي في حوض الماء في وعاء النفايات، كي يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه. اطلب من الممتحِن مكعّبات ثلج إضافيّة وأَضفها إلى حوض الماء.
 - رح. بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند "رد" ، انقل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 2".
 ______ ، وانتظر 8 دقائق. أثناء الانتظار أجب عن السؤال "37. أ".
 - (5 درجات) **37.** أ. حضّر في دفترك "الجدول 1"، وفيه مجرى التجربة التي أجريتَها، ابتداءً من البند "الا". اشمل في الجدول أيضًا عمودًا لكتابة النتائج.
 - 10. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "٢٠"، أُخرِج الأنبوب الاختباريّ C من "حوض الماء 2"، وأَمِلْهُ بحذر على جانبه كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
 - (i) إذا لم يتخثّر المحلول في الأنبوب الاختباريّ C أعد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى. بعد الانتظار افحص إذا تختّر المحلول في الأنبوب الاختباريّ C، واعمل حسب التعليمات في البند الفرعيّ (ii).
 - إذا لم يتخثّر المحلول توجّه إلى الممتحن.
 - (ii) إذا تخثّر المحلول في الأنبوب الاختباريّ C انقل الأنبوب الاختباريّ C إلى حامل الأنابيب الاختباريّة، أُخرِج أيضًا الأنبوبين الاختباريّين B ، A من "حوض الماء 2"، وانقلهما إلى حامل الأنابيب الاختباريّة.

أجب عن السؤالين 37. "ب"-38.

(4 درجات) 37. ب. اذكر في عمود النتائج في الجدول 1 الذي في دفترك، إذا "تختّر" أم "لم يتختّر" المحلول في الأنابيب الاختباريّة.

اكتب عنوانًا لعمود النتائج.

(3 درجات) 38. أ. اشرح ما هي أهميّة بقاء الأنابيب الاختباريّة C-A في "حوض الماء 1".

(6 درجات) بقطعة عليها في ثلاثة الأنابيب الاختباريّة C-A. استعن في تفسيرك بقطعة "لمعلوماتك" التي في صفحة 3 وبالرسم التوضيحيّ 1 وبالرسم التوضيحيّ 2 أيضًا.

٢٥. انقل ثلاثة الأنابيب الاختبارية C-A فقط إلى وعاء النفايات.

القسم "ب" - التجربة: نشاط إنزيم من مستخلص الأناناس

تحضير مستخلص أناناس بتراكيز مختلفة

٢٠. رقّم 4 أنابيب اختباريّة بالأرقام 1-4.

- بواسطة الماصّة "مستخلص أناناس" وبواسطة الماصّة 5 ملل "ماء"، انقل إلى كلّ واحد من الأنابيب الاختباريّة 1-4 مستخلص أناناس وماءً، حسب ما هو مفصَّل في الجدول 2.

الجدول 2

جـ	ب	Í	
تركيز مستخلص الأناناس	حجم الماء (ملل)	حجم مستخلص الأناناس	الأنبوب الاختباريّ
(%)		(ملل)	
	4	0	1
	3.8	0.2	2
	3.6	0.4	3
	2	2	4

اخلط محتوى الأنابيب الاختباريّة بواسطة هزّها بخفّة.

أجب عن السؤال 39.

(6 درجات) 39. احسب تركيز مستخلص الأناناس في كلّ واحد من الأنابيب الاختباريّة 1-4. اكتب التراكيز التي حسبتَها في الأماكن الملائمة في الجدول 2 الذي في نموذج الامتحان.

انتبه: تركيز مستخلص الأناناس الذي حضّرتَه في البند "ה" يُعتبَر 100%.

/يتبع في صفحة 6/

- ‹n. بواسطة الماصّة 5 ملل "ماء" ، انقل 3 ملل من المحلول الذي في الأنبوب الاختباريّ 1 إلى وعاء النفايات. بذلك حجم السوائل الذي تبقّى في الأنبوب الاختباريّ يكون 1 ملل.
 - أُعِد تنفيذ هذه العمليّة بواسطة نفس الماصّة مع الأنبوب الاختباريّ 2، وبعد ذلك مع الأنبوبين الاختباريّين 3 و 4.
 - ‹٥٠. بواسطة الماصّة "جلاتين"، انقل 2 ملل من محلول الجلاتين إلى كلّ واحد من أربعة الأنابيب الاختباريّة 1-4.
 - اخلط محتوى الأنابيب الاختباريّة بواسطة هزّها بخفّة.
 - $.40^{\circ} \text{C} 37^{\circ} \text{C}$ تأكّد أنّ درجة الحرارة في "حوض الماء 1" هي في المجال $.37^{\circ} \text{C}$.
 - מא. أُدخل الأنابيب الاختباريّة 1-4 إلى "حوض الماء 1".
 - سجّل الساعة ______ ، وانتظر 5 دقائق.
 - أثناء الانتظار نفِّذ التعليمات التي في البند "כב".
 - CE. تأكّد أنّ درجة الحرارة في "حوض الماء 2" هي أقلّ من 10°C. إذا كانت درجة الحرارة أعلى من 10°C ، اسكب قليلاً من الماء الذي في حوض الماء في وعاء النفايات حتّى يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه . اطلب من الممتحن مكعّبات ثلج إضافيّة ، وأَضفْها إلى حوض الماء .
 - _ بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند "כא"، انقل الأنابيب الاختباريّة 1-4 إلى "حوض الماء 2".
 - سجّل الساعة ______ ، وانتظر 8 دقائق. أثناء الانتظار أجب عن السؤال "40. أ".

/يتبع في صفحة 7/

(10 درجات) 40. أ. انسخ الجدول 3 إلى دفترك.

- (1) انسخ إلى العمود "أ" في الجدول 3 الذي في **دفترك** التراكيز التي حسبتَها في السؤال "**98**" (الجدول 2 الذي في نموذج الامتحان).
 - (2) أكمل التفاصيل الناقصة في العمود "ب".

الجدول 3

د	ج	ب	f	
النتائج: حجم محلول الپپتيدات (ناتج تحليل الجلاتين) (ملل)	النتائج: مدى التخشَّر في درجة حرارة أقلَّ من 10°C حرارة أقلَّ من 10°c (تخشَّر/تخشَّر جزئيًّا/لم يتخشّر)	حجم محلول الجلاتين (ملل)	تركيز مستخلص الأناناس (%)	الأنبوب الاختباريّ
				1
				2
				3
				4

- CK. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "CE"، أُخرِج الأنبوب الاختباريّ 1 من "حوض الماء 2"، وأَمِلْهُ بحذر على جانبه، كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
- (i) إذا لم يتختّر المحلول في الأنبوب الاختباريّ 1 أَعِد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى.
 - بعد الانتظار افحص إذا تختّر المحلول في الأنبوب الاختباريّ 1، واعمل حسب التعليمات التي في البند الفرعيّ (ii).
- (ii) إذا تختّر المحلول في الأنبوب الاختباريّ 1 اكتب مدى التختّر في العمود "ج" في الجدول 3 الذي في **دفترك**، وأُعد الأنبوب الاختباريّ إلى "حوض الماء 2".
 - أعد تنفيذ هذه التعليمات مع ثلاثة الأنابيب الاختباريّة 2-4، وأعدها إلى "حوض الماء 2".

فحص مدى تحليل الجلاتين إلى پپتيدات

اقرأ بتمعن البنود "ح-د١" قبل تنفيذ التعليمات.

عليك أن تقيس حجم السائل الذي لم يتختّر في كلّ واحد من الأنابيب الاختباريّة 1-4. انتبه: هذا السائل هو ناتج تحليل الجلاتين إلى يبتيدات.

- تحت تصرّفك حتّى الخطّ المشار إليه (انظر الرسم النفر النفر الرسم التوضيحيّ 3).
 - ضع قمعًا في الأنبوب المدرَّج.

الرسم التوضيحي 3: أنبوب مدرَّج مشار عليه بخطُّ

- כה. أُخرج الأنبوب الاختباريّ 1 من "حوض الماء 2"، ونَشّف الجهة الخارجيّة للأنبوب الاختباريّ.
- اقلب الأنبوب الاختباري 1 فوق القمع وهزّه، كي ينسكب السائل الذي لم يتختّر (محلول الببتيدات) في الأنبوب المدرَّج.
 - افحص ما هو حجم السائل (بالمللترات) الذي أُضيف إلى الأنبوب المدرَّج فوق الخطَّ المشار إليه.
- اكتب النتيجة في المكان الملائم في الجدول 3 الذي في دفترك. إذا تختّر كلّ الجلاتين ولم يُضَف حجم سائل إلى الأنبوب المدرَّج، اكتب النتيجة 0.
 - أفرغ السائل الذي في الأنبوب المدرَّج في وعاء النفايات.
- CI. أُعِد تنفين التعليمات التي في البندين "CT-Cn" مع ثلاثة الأنابيب الاختباريّة 2-4 ، واكتب نتيجة كلّ قياس في المكان الملائم في الجدول 3 الذي في دفترك. انتبه: الفروق بين أحجام السوائل التي أُضيفت إلى الأنبوب المدرَّج يمكن أن تكون صغيرة.

أجب عن الأسئلة **40. "ب" - 44**.

(4 درجات) 40. ب. اكتب عنوانًا للجدول 3 الذي في دفترك.

(5 درجات) 41. ما هو المتغيّر المستقلّ في التجربة التي أجريتَها؟

(5 درجات) 42. أ. ما هو المتغيّر المتعلّق في التجربة التي أجريتَها؟

انسخ إلى دفترك الإِجابة الصحيحة من بين الإِجابات الأربع IV-I التي أمامك.

I. مدى تختُّر محلول الجلاتين.

II. مدى نشاط الإنزيم الذي يحلّل الزلال.

III. تركيز مستخلص الأناناس.

IV. حجم محلول الجلاتين.

(6 درجات) ب. ما هي طريقة قياس المتغيّر المتعلّق؟

- اشرح كيف تلائم طريقة القياس هذه قياس المتغيّر المتعلّق.

(5 درجات) 43. أ. في التجربة التي أجريتَها، تركيز محلول الجلاتين في الأنابيب الاختباريّة 1-4 هو عامل حُفظ ثابتًا. اشرح لماذا من المهمّ الحفاظ على هذا العامل بالذات ثابتًا في مجرى التجربة.

(3 درجات) ب. اذكر عاملاً آخر حُفظ ثابتًا في مجرى التجربة.

(6 درجات) 44. ما هو الاستنتاج الذي يمكن استنتاجه من نتائج التجربة؟

القسم "ج" - تحليل نتائج تجربة: استعمال الفطر Beauveria bassiana لإبادة آفات في المزروعات

تُسبِّب حشرات معيّنة أضرارًا للمزروعات. بفضل الوعي المتزايد لجودة البيئة ولصحّة الإِنسان، يحاول العلماء إيجاد طرق لإبادة الآفات بوسائل ودّيّة للبيئة. إحدى هذه الطرق هي استعمال الفطر B. bassiana .

يُنتِج الفطر إنزيمات تحلّل الزلاليّات، التي تؤدّي إلى تحليل الغلاف الصلب لجسم الحشرات، المركَّب من متعدّد سكّريّات ومن <u>زلال</u>. بواسطة التحليل الإنزيميّ للغلاف، يدخل الفطر إلى جسم الحشرة، ويُفرز موادّ سامّة تؤدّي إلى موتها.

التجربة 1

عَرَّض الباحثون مجموعتين من الحشرات لسائل يحوي خلايا فطر من صنفين. كلَّ مجموعة حشرات تعرِّضت لصنف مختلف للفطر. خلال 18 يومًا، فحص الباحثون نسبة موت الحشرات من المجموعتين. نتائج التجربة معروضة في الجدول 4 الذي أمامك.

الجدول 4

ت الحشرات (%)	الوقت الذي مرّ منذ التعرّض	
فطر من الصنف "ب"	فطر من الصنف "أ"	(أيّام)
30	15	4
60	35	8
90	45	12
97	60	16
97	62	18

أجب عن السؤالين 45-46.

- (3 درجات) 45. أ. عليك أن تعرض بطريقة بيانيّة نتائج التجربة المعروضة في الجدول 4. أيّ نوع عرض بيانيّ هو الأكثر ملاءمة لوصف النتائج رسم بيانيّ متّصل أم مخطّط أعمدة؟ علّل إجابتك.
- (7 درجات) ب. تحت تصرّفك ورقة ملمتريّة في الملحق المرفق. اعرض عليها بطريقة بيانيّة ملائمة النتائج المعروضة في الجدول 4.

(6 درجات) 46. أ. صف النتائج المعروضة في الرسم البيانيّ.

• . في معالجة ضابطة (ليست معروضة في الجدول 4)، فحص الباحثون نسبة موت حشرات كانت في نفس الشروط لكنّها لم تتعرّض لفطر من الصنف "أ" أو لفطر من الصنف "ب". اشرح ما هي أهمّية هذه المعالجة الضابطة.

أراد الباحثون أن يفحصوا مِمَّ تنبع الفروق التي وُجدت في نسبة موت الحشرات في التجربة 1 (الجدول 4). لهذا الغرض أجرى الباحثون التجربة 2.

التجربة 2

نمّى الباحثون صنفَي الفطر، كلَّ صنف على حِدة، على وسط تنمية فيه زلال الجلاتين. قاس الباحثون مستوى تحليل زلال الجلاتين بوجود كلّ واحد من صنفَى الفطر.

وُجد في التجربة 2 أنّ مستوى تحليل زلال الجلاتين بوجود الصنف "ب" كان أعلى من مستوى تحليله بوجود الصنف "أ".

أجب عن السؤالين 47 _48.

(6 درجات) 47. اعتمد على مقدّمة القسم "ج" وعلى النتيجة التي نتجت في التجربة 2 ، وفسّر نتائج التجربة 1 .

(5 درجات) 48. الإنزيمات التي تحلّل الزلال موجودة في خلايا ثمرة الأناناس داخل عضيّات، ولا تكون حرّة في السيتوپلازما.

حسب نتائج التجربة التي أجريتَها في القسم "أ" ونتائج البحث الذي قرأتَ عنه في القسم "ج"، اشرح لماذا وجود هذه الإنزيمات داخل العضيّات هو أفضليّة بالنسبة لخلايا الأناناس.

يجب إلصاق ملصَقة ممتحَن وملصَقة نموذج امتحان على الملحق الذي فيه العرض البيانيّ. سلّم للممتحِن النموذج الذي معك مع الدفتر والملحق الذي فيه العرض البيانيّ.

ت م لا ל ח ה! نتمنّى لك النّجاح!

זכות היוצרים שמורה למדינת ישראל. אין להעתיק או לפרסם אלא ברשות משרד החינוך. حقوق الطّبع محفوظة لدولة إسرائيل. النّسخ أو النّشر ممنوعان إلّا بإذن من وزارة التّربية والتّعليم.

מדינת ישראל משרד החינוך

סוג הבחינה: בגרות

מועד הבחינה: קיץ תשע"ח, 2018

מספר השאלון: 43386

נספח: נייר מילימטרי (לשאלה 57)

תרגום לערבית (2)

בחינת בגרות מעשית בביולוגיה

בעיה 5

دولة إسرائيل وزارة التربية والتعليم

نوع الامتحان: بچروت

موعد الامتحان: صيف 2018

رقم النّموذج: 43386

ملحق: ورقة ملمتريّة (للسؤال 57)

ترجمة إلى العربيّة (2)

امتحان بچروت عمليّ في البيولوجيا

المسألة 5

سجّل رقم هويّتك هنا:								

تعليمات للممتحن:

أ. مدّة الامتحان: ثلاث ساعات.

ب. موادّ مساعدة يُسمح استعمالها: آلة حاسبة.

ج. تعليمات خاصّة:

اقرأ التعليمات بتمعن، وفكر جيّدًا في خطواتك.

 اكتب جميع مشاهداتك وإجاباتك (والتخطيطات والرسوم أيضًا) بقلم حبر.

 اعتمد في إجاباتك على مشاهداتك وعلى النتائج التي حصلت عليها، حتى لو لم تلائم التوقعات.

הוראות לנבחן:

א. משך הבחינה: שלוש שעות.

ב. חומר עזר מותר בשימוש: מחשבון.

ג. הוראות מיוחדות:

 קרא את ההנחיות ביסודיות, ושקול היטב את צעדיך.

רשום בעט את כל תצפיותיך ותשובותיך
 גם סרטוטים וציורים).

3. בסס את תשובותיך על תצפיותיך ועל התוצאות שקיבלת, גם אם הן אינן תואמות את הצפוי.

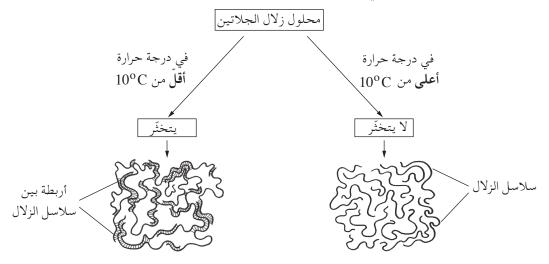
التّعليمات في هذا النّموذج مكتوبة بصيغة المذكّر وموجّهة للممتحنات وللممتحنين على حدّ سواء.

نتمنّى لك النّجاح!

בהצלחה!

المسألة 5

في هذه المسألة ستتناول نشاط إنزيمات تحلّل الزلاليّات.


في هذا النموذج، رُقّمت الأسئلة بالأرقام 49-60. عدد الدرجات لكلّ سؤال مسجّل عن يمينه.

أجب عن جميع الأسئلة في الدفتر.

القسم "أ" - تأثير مستخلص الأناناس على زلال الجلاتين

في صناعة الغذاء يُستعمَل زلال الجلاتين لتحضير الحلويات، لأنّ الجلاتين يتخثّر في درجة حرارة أقلَّ من 10°C، ويكوّن نسيج جِلي. في درجات حرارة منخفضة، تتكوّن أربطة بين سلاسل الزلال إلى أن يتكوّن مبنًى شبكيّ، كما هو موصوف في الرسم التوضيحيّ 1، وبذلك يحدث تخثُّر زلال الجلاتين.

الرسم التوضيحيّ 1: تأثير درجة الحرارة على تخثُّر محلول الجلاتين

تحضير مستخلص من ثمرة الأناناس

- ٨. بواسطة قلم للتأشير على الزجاج، اكتب "مستخلص أناناس" على أنبوب اختباريّ.
- على طاولتك مدقة وجرن وسكين وملعقة صغيرة وطبق يُستعمل لمرّة واحدة فيه قطعة من ثمرة الأناناس.
 اقطع الأناناس إلى قطع صغيرة، وبواسطة الملعقة الصغيرة انقل قطع الأناناس والسائل الذي في الطبق إلى الجرن.
 - κ. تحت تصرّفك وعاء فيه مياه مقطرة.
 - اكتب "ماء" على ماصّة 10 ملل. بواسطة الماصّة انقل 5 ملل ماء إلى الجرن.
 - بواسطة المدقّة اهرس قِطع الأناناس.
 - انقل 5 ملل ماء أخرى إلى الجرن، واستمرّ في الهرس إلى أن تحصل على عجين.
- 7. على طاولتك قمع وقطعة شاش. ضع القمع في الأنبوب الاختباري "مستخلص أناناس"، وبطّن القمع بالشاش.

- ت. بواسطة ملعقة صغيرة انقل مهروس الأناناس والسائل إلى القمع الذي في الأنبوب الاختباريّ.
- انقل 5 ملل ماء إلى الجرن. استعن بالمدقة لخلط بقايا المهروس بالماء، وانقل كل محتوى الجرن إلى القمع.
 - اجمع أطراف الشاش واعصره بلطف كي تترشّح بقايا المستخلص في الأنبوب الاختباريّ.
 - ارم الشاش في وعاء النفايات.

فحص تختّر زلال الجلاتين

- ر. تحت تصرّفك كأسان تُستعملان لمرّة واحدة الواحدة داخل الأخرى. اكتب على الكأس الخارجيّة:
 "حوض الماء 1".
- اطلب من الممتحِن ماءً ساخنًا، وحضّر في الكأس الداخليّة حوض ماء تكون درجة حرارة الماء فيه في المجال $40^{\circ}\mathrm{C}-37^{\circ}\mathrm{C}$.
 - احرص على أن يكون سطح الماء في حوض الماء حتّى ارتفاع الخطّ المشار إليه.
 - 1. أشر إلى ثلاثة أنابيب اختباريّة بالأحرف C ، B ، A.
 - تحت تصرّفك وعاء فيه محلول جلاتين وماصّة 10 ملل. اكتب "جلاتين" على الماصّة.
- 0. بواسطة الماصّة "جلاتين" انقل 2 ملل من محلول الجلاتين إلى كلّ واحد من ثلاثة الأنابيب الاختباريّة C-A. انتبه: عليك ضخّ محلول الجلاتين ببطء لمنع تكوُّن فقاعات هواء.
 - ملاحظة: إذا تخثّر محلول الجلاتين في الوعاء توجّه إلى الممتحن.
- د. تحت تصرّفك ثلاث ماصّات 1 ملل. اكتب على إحدى الماصّات "تريپسين"، واكتب على الثانية "مستخلص أناناس"، واكتب على الثالثة "ماء".

لمعلوماتك: التريبسين هو إنزيم يحفّز تحليل زلاليّات مختلفة، منها زلال الجلاتين أيضًا، إلى سلاسل قصيرة \dot{z} تُسمّى پپتيدات. الپپتيدات \underline{V} تتختّر في درجة حرارة أقلّ من \dot{z} .

الرسم التوضيحي 2: تحليل الجلاتين إلى پپتيدات بواسطة إنزيمات

- ۲۸. تحت تصرّفك أنبوب اختباري فيه الإنزيم تريبسين. بواسطة الماصّة "تريبسين"، انقل 1 ملل من محلول التريبسين إلى الأنبوب الاختباري A.
- بواسطة الماصّة "مستخلص أناناس"، انقل 1 ملل من مستخلص الأناناس الذي حضّرتَه إلى الأنبوب الاختباريّ B.
 - بواسطة الماصّة "ماء"، انقل 1 ملل ماء إلى الأنبوب الاختباريّ C.
 - اخلط محتوى الأنابيب الاختبارية بواسطة هزّها بخفّة.

- د. تأكّد أنّ درجة الحرارة في "حوض الماء 1" الذي حضّرتَه في البند "١" هي في المجال 30°C−37°C ، وصحّعها حسب الحاجة.
 - أُدخل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 1".
 - سجّل الساعة ______، وانتظر 5 دقائق.
 - أثناء الانتظار نفّذ تعليمات البند "‹κ".
 - ‹د. على طاولتك وعاء مكتوب عليه "حوض الماء 2" فيه ماء بارد. اطلب من الممتحِن 5 مكعّبات ثلج، وأُدخِلها إلى حوض الماء.
- تأكّد أنّ درجة الحرارة في "حوض الماء 2" أقلّ من 10° C. إذا كانت درجة الحرارة أعلى من 10° C، اسكب قليلاً من الماء الذي في حوض الماء في وعاء النفايات، كي يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه. اطلب من الممتحِن مكعّبات ثلج إضافيّة وأضفها إلى حوض الماء.
 - رح. بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند "ر"، انقل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 2".
 _______ ، وانتظر 8 دقائق. أثناء الانتظار أجب عن السؤال "49. أ".
 - (5 درجات) 49. أ. حضّر في دفترك "الجدول 1"، وفيه مجرى التجربة التي أجريتَها، ابتداءً من البند "تا". اشمل في الجدول أيضًا عمودًا لكتابة النتائج.
- ١٥. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "٦٠"، أَخرِج الأنبوب الاختباريّ C من "حوض الماء 2" وأَمِلْهُ بحذر على جانبه كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
 - (i) إذا لم يتخثّر المحلول في الأنبوب الاختباريّ C أعد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى. بعد الانتظار افحص إذا تخثّر المحلول في الأنبوب الاختباريّ C، واعمل حسب التعليمات في البند الفرعيّ (ii).
 - إذا لم يتخثّر المحلول توجّه إلى الممتحن.
 - (ii) إذا تختّر المحلول في الأنبوب الاختباريّ C انقل الأنبوب الاختباريّ C إلى حامل الأنابيب الاختباريّة، أُخرِج أيضًا الأنبوبين الاختباريّين B، A من "حوض الماء 2"، وانقلهما إلى حامل الأنابيب الاختباريّة.

أجب عن السؤالين **49. "ب"-50**.

- (4 درجات) **49. ب.** اذكر في عمود النتائج في الجدول 1 الذي في **دفترك**، إذا "تخثّر" أم "لم يتخثّر" المحلول في الجدول 1 الذي في الختباريّة.
 - اكتب عنوانًا لعمود النتائج.

(3 درجات) 50. أ. اشرح ما هي أهمّية بقاء الأنابيب الاختباريّة C-A في "حوض الماء 1".

(6 درجات) ب. فسّر النتائج التي حصلتَ عليها في ثلاثة الأنابيب الاختباريّة C-A.

استعن في تفسيرك بقطعة "لمعلوماتك" التي في صفحة 3 وبالرسم التوضيحيّ 1 وبالرسم التوضيحيّ 1 التوضيحيّ 2 أيضًا.

٠٢٥. انقل ثلاثة الأنابيب الاختباريّة C-A فقط إلى وعاء النفايات.

القسم "ب" - التجربة: نشاط إنزيم من مستخلص الأناناس

تحضير مستخلص أناناس مخفف

١٠. عليك تخفيف مستخلص الأناناس الذي حضّرتَه في القسم "أ". قُم بذلك على النحو التالي:

- اكتب "مستخلص أناناس مخفّف" على أنبوب اختباري .
- بواسطة الماصّة "مستخلص أناناس"، انقل 2 ملل من محلول مستخلص الأناناس الذي حضّرتَه في القسم "أ" إلى الأنبوب الاختباريّ.
 - بواسطة الماصّة "ماء"، انقل 8 ملل من المياه المقطّرة إلى الأنبوب الاختباريّ.
 - اخلط محتوى الأنبوب الاختباري بواسطة هزّه بخفّة.

أجب عن السؤال 51.

(5 درجات) 51. احسب تركيز مستخلص الأناناس المخفَّف الذي حضّرتَه.

انتبه: تركيز مستخلص الأناناس الذي حضّرتَه في البند "ה" يُعتبَر 100%.

تحضير محاليل من مستخلص الأناناس بدرجات pH مختلفة

٠٦. رقّم خمسة أنابيب اختباريّة بالأرقام 1-5.

١٥٠. تحت تصرّفك ثلاث قناني قطّارة فيها:

- حامض الكلوريدريك (HCl)
- محلول هيدروكسيد الصوديوم (NaOH)
 - مياه مقطّرة

إلى كلَّ واحد من الأنابيب الاختباريَّة 1-5، انقل قطرات من محلول حامض الكلوريدريك ومن محلول هيدروكسيد الصوديوم ومن المياه المقطِّرة، حسب ما هو مفصَّل في الجدول 2 الذي أمامك.

الجدول 2

حجم الماء	حجم	حجم حامض	الأنبوب
(قطرات)	هيدروكسيد الصوديوم	الكلوريدريك (قطرات)	الاختباري
	(قطرات)		
10	0	0	1
8	0	2	2
8	2	0	3
0	10	0	4
10	0	0	5

د. اكتب "مستخلص أناناس مخفَّف" على ماصّة 1 ملل.

/يتبع في صفحة 7/

CX. بواسطة الماصّة "مستخلص أناناس مخفَّف" والماصّة "ماء"، انقل إلى كلّ واحد من الأنابيب الاختباريّة 1-5 مستخلص أناناس مخفَّفًا وماءً، كما هو مفصَّل في الجدول 3 في العمودين "أ، ب".

الجدول 3

و	هـ	د	جـ	ب	f	
النتائج: حجم محلول الپپتيدات	النتائج: مدى التختّر في درجة	درجة pH	حجم	حجم الماء	حجم	الأنبوب
(ناتج تحليل الجلاتين)	حرارة أقلّ من 10 ^o C		محلول	(ملل)	مستخلص	الاختباريّ
(ملل)	(تخثّر / تخثّر جزئيًّا /لم يتخثّر)		الجلاتين		الأناناس	
			(ملل)		المخفَّف	
					(ملل)	
				1	0	1
				0	1	2
				0	1	3
				0	1	4
				0	1	5

- CE. انقل بواسطة الماصّة "جلاتين" 2 ملل من محلول الجلاتين إلى كلّ واحد من الأنابيب الاختباريّة 1-5.
 - اخلط محتوى الأنابيب الاختباريّة بواسطة هزّها بخفّة.
 - $. 40^{\circ} C 37^{\circ} C$ مى في المجال $. 40^{\circ} C 37^{\circ} C$ درجة الحرارة في "حوض الماء . 1 هي في المجال
 - أُدخل الأنابيب الاختباريّة 1-5 إلى "حوض الماء 1".
 - _ سجّل الساعة _____، وانتظر 5 دقائق. أثناء الانتظار نفّذ البندين "כד" "כה".
- CT. تحت تصرّفك ملقط وعيدان لفحص pH. استعن بالملقط وَقِس بمساعدة العيدان درجة الـ pH في كلّ واحد من الأنابيب الاختباريّة 1-5. اكتب درجات الـ pH في الأماكن الملائمة في الجدول 3 الذي في نموذج الامتحان.
- Cr. تأكّد أنّ درجة الحرارة في "حوض الماء 2" أقلّ من 10°C. إذا كانت درجة الحرارة أعلى من 10°C ، اسكب قليلاً من الممتحِن الماء الذي في حوض الماء في وعاء النفايات، كي يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه. اطلب من الممتحِن مكعّبات ثلج إضافيّة، وأضفها إلى حوض الماء.
 - بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند " כג" ، انقل الأنابيب الاختباريّة 1-5 إلى "حوض الماء 2".
 - سجّل الساعة ______. انتظر 8 دقائق. أثناء الانتظار أجب عن السؤال "52. أ".
 - (11 درجة) **52.** أ. انسخ الجدول 3 إلى **دفترك**.
 - أكمل التفاصيل الناقصة في العمود "ج".

- CI. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "Cn"، أَخرِج الأنبوب الاختباريّ 1 من "حوض الماء 2"، وأَمِلْهُ بحذر على جانبه، كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
- (i) إذا لم يتختّر المحلول في الأنبوب الاختباريّ $1 \tilde{j}$ عد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى.

بعد الانتظار افحص إذا تخثّر المحلول في الأنبوب الاختباريّ 1، واعمل حسب التعليمات التي في البند الفرعيّ (ii).

- (ii) إذا تخثّر المحلول في الأنبوب الاختباريّ 1 اكتب مدى التخثّر في العمود "هـ" في الجدول 3 الذي في دفترك، وأُعد الأنبوب الاختباريّ إلى "حوض الماء 2".
 - أعد تنفيذ هذه التعليمات مع أربعة الأنابيب الاختباريّة 2-5، وأعدها إلى "حوض الماء 2".

فحص مدى تحليل الجلاتين إلى يپتيدات

اقرأ بتمعّن البنود "٢٥-٥٥" قبل تنفيذ التعليمات.

عليك أن تقيس حجم السائل الذي لم يتختّر في كلّ واحد من الأنابيب الاختباريّة 1-5. انتبه: هذا السائل هو ناتج تحليل الجلاتين إلى بيتيدات.

- د١. بواسطة الماصّة "ماء"، املاً ماءً في الأنبوب المدرَّج الذي تحت تصرّفك حتّى الخطّ المشار إليه (انظر الرسم التوضيحيّ 3).
 - ضع قمعًا في الأنبوب المدرَّج.

الرسم التوضيحي 3: أنبوب مدرَّج مشار عليه بخط

cn. أُخرج الأنبوب الاختباريّ 1 من "حوض الماء 2"، ونَشِّف الجهة الخارجيّة للأنبوب الاختباريّ.

- اقلب الأنبوب الاختباري 1 فوق القمع وهزّه، كي ينسكب السائل الذي لم يتختّر (محلول الببتيدات) في الأنبوب المدرَّج.
 - افحص ما هو حجم السائل (بالمللترات) الذي أضيف إلى الأنبوب المدرَّج فوق الخطَّ المشار إليه.
- اكتب النتيجة في المكان الملائم في الجدول 3 الذي في دفترك. إذا تختّر كلّ الجلاتين ولم يُضَف حجم سائل إلى الأنبوب المدرَّج، اكتب النتيجة 0.
 - أفرغ السائل الذي في الأنبوب المدرَّج في وعاء النفايات.

د٥. أعِد تنفيذ التعليمات التي في البندين "cr-cn" مع أربعة الأنابيب الاختباريّة 2-5، واكتب نتيجة كلّ قياس في المكان الملائم في الجدول 3 الذي في دفترك. انتبه: الفروق بين أحجام السوائل التي أُضيفت إلى الأنبوب المدرَّج يمكن أن تكون صغيرة.

أجب عن الأسئلة 52. "ب" - 56.

(4 درجات) 52. ب. اكتب عنوانًا للجدول 3 الذي في دفترك.

(5 درجات) 53. ما هو المتغيّر المستقلّ في التجربة التي أجريتَها؟

(5 درجات) 54. أ. ما هو المتغيّر المتعلّق في التجربة التي أجريتَها؟

انسخ إلى دفترك الإجابة الصحيحة من بين الإجابات الأربع IV-I التي أمامك.

I. مدى تختُّر محلول الجلاتين.

II. حجم محلول الجلاتين.

III. تركيز مستخلص الأناناس.

IV. مدى نشاط الإنزيم الذي يحلّل الزلال.

(6 درجات) ب. ما هي طريقة قياس المتغيّر المتعلّق؟

- اشرح كيف تلائم طريقة القياس هذه قياس المتغيّر المتعلّق.

(5 درجات) 55. أ. في التجربة التي أجريتَها، تركيز مستخلص الأناناس في الأنابيب الاختباريّة 2-5 هو عامل حُفظ ثابتًا. اشرح لماذا من المهمّ الحفاظ على هذا العامل بالذات ثابتًا في مجرى التجربة.

(3 درجات) ب. اذكر عاملاً آخر حُفظ ثابتًا في مجرى التجربة.

(6 درجات) 56. ما هو الاستنتاج الذي يمكن استنتاجه من نتائج التجربة التي نتجت في الأنابيب الاختباريّة 2-5؟

/يتبع في صفحة 10 /

القسم "ج" – تحليل نتائج تجربة: استعمال الفطر Beauveria bassiana لإبادة آفات في المزروعات

تُسبِّب حشرات معيّنة أضرارًا للمزروعات. بفضل الوعي المتزايد لجودة البيئة ولصحّة الإِنسان، يحاول العلماء إيجاد طرق لإبادة الآفات بوسائل ودّيّة للبيئة. إحدى هذه الطرق هي استعمال الفطر B. bassiana.

يُنتِج الفطر إنزيمات تحلّل الزلاليّات، التي تؤدّي إلى تحلّيل الغلاف الصلب لجسم الحشرات، المركّب من متعدّد سكّريّات ومن زلال. بواسطة التحليل الإنزيميّ للغلاف، يدخل الفطر إلى جسم الحشرة، ويُفرز موادّ سامّة تؤدّي إلى موتها.

التجربة 1

عَرَّض الباحثون مجموعتين من الحشرات لسائل يحوي خلايا فطر من صنفين. كلّ مجموعة حشرات تعرّضت لصنف مختلف للفطر. خلال 18 يومًا، فحص الباحثون نسبة موت الحشرات من المجموعتين.

نتائج التجربة معروضة في الجدول 4 الذي أمامك.

الجدول 4

ت الحشرات (%)	الوقت الذي مرّ منذ التعرّض	
فطر من الصنف "ب"	فطر من الصنف "أ"	(أيّام)
30	15	4
60	35	8
90	45	12
97	60	16
97	62	18

أجب عن السؤالين 57-58.

- (3 درجات) 57. أ. عليك أن تعرض بطريقة بيانيّة نتائج التجربة المعروضة في الجدول 4. أيّ نوع عرض بيانيّ هو الأكثر ملاءمة لوصف النتائج رسم بيانيّ متّصل أم مخطّط أعمدة؟ علّل إجابتك.
- (7 درجات) ب. تحت تصرّفك ورقة ملمتريّة في الملحق المرفق. اعرض عليها بطريقة بيانيّة ملائمة النتائج المعروضة في الجدول 4.

(6 درجات) 58. أ. صف النتائج المعروضة في الرسم البيانيّ.

• . في معالجة ضابطة (ليست معروضة في الجدول 4)، فحص الباحثون نسبة موت حشرات كانت في نفس الشروط لكنّها لم تتعرّض لفطر من الصنف "أ" أو لفطر من الصنف "ب". اشرح ما هي أهمّية هذه المعالجة الضابطة.

أراد الباحثون أن يفحصوا مِمَّ تنبع الفروق التي وُجدت في نسبة موت الحشرات في التجربة 1 (الجدول 4). لهذا الغرض أجرى الباحثون التجربة 2.

التجربة 2

نمّى الباحثون صنفَي الفطر، كلَّ صنف على حِدة، على وسط تنمية فيه زلال الجلاتين. قاس الباحثون مستوى تحليل زلال الجلاتين بوجود كلّ واحد من صنفَي الفطر.

وُجد في التجربة 2 أنّ مستوى تحليل زلال الجلاتين بوجود الصنف "ب" كان أعلى من مستوى تحليله بوجود الصنف "أ".

أجب عن السؤالين 59 -60.

(6 درجات) 59. اعتمد على مقدّمة القسم "ج" وعلى النتيجة التي نتجت في التجربة 2 ، وفسّر نتائج التجربة 1.

(5 درجات) 60. الإِنزيمات التي تحلّل الزلال موجودة في خلايا ثمرة الأناناس داخل عضيّات، ولا تكون حرّة في السيتوپلازما.

حسب نتائج التجربة التي أجريتَها في القسم "أ" ونتائج البحث الذي قرأتَ عنه في القسم "ج"، اشرح لماذا وجود هذه الإنزيمات داخل العضيّات هو أفضليّة بالنسبة لخلايا الأناناس.

يجب إلصاق ملصَقة ممتحن وملصَقة نموذج امتحان على الملحق الذي فيه العرض البيانيّ. سلّم للممتحِن النموذج الذي معك مع الدفتر والملحق الذي فيه العرض البيانيّ.

ت م لا ל ח ה! نتمنّى لك النّجاح!

זכות היוצרים שמורה למדינת ישראל. אין להעתיק או לפרסם אלא ברשות משרד החינוך. حقوق الطّبع محفوظة لدولة إسرائيل. النّسخ أو النّشر ممنوعان إلّا بإذن من وزارة التّربية والتّعليم.

מדינת ישראל משרד החינוך

סוג הבחינה: בגרות

מועד הבחינה: קיץ תשע"ח, 2018

מספר השאלון: 43386

נספח: נייר מילימטרי (לשאלה 69)

תרגום לערבית (2)

בחינת בגרות מעשית בביולוגיה

בעיה 6

دولة إسرائيل وزارة التّربية والتّعليم

نوع الامتحان: بچروت موعد الامتحان: صيف 2018

رقم النّموذج: 43386

ملحق: ورقة ملمتريّة (للسؤال 69)

ترجمة إلى العربيّة (2)

امتحان بچروت عمليّ في البيولوجيا

المسألة 6

	، هنا :	ويّتك	رقم ه	ىجّل	ىد	

تعليمات للممتحن:

أ. مدّة الامتحان: ثلاث ساعات.

ب. موادّ مساعدة يُسمح استعمالها: آلة حاسبة.

ج. تعليمات خاصّة:

- اقرأ التعليمات بتمعن، وفكر جيّدًا في خطواتك.
 - اكتب جميع مشاهداتك وإجاباتك (والتخطيطات أيضًا) بقلم حبر.
- اعتمد في إجاباتك على مشاهداتك وعلى النتائج التي حصلت عليها، حتى لو لم تلائم التوقعات.

:הוראות לנבחן

- א. משך הבחינה: שלוש שעות.
- ב. חומר עזר מותר בשימוש: מחשבון.

ג. הוראות מיוחדות:

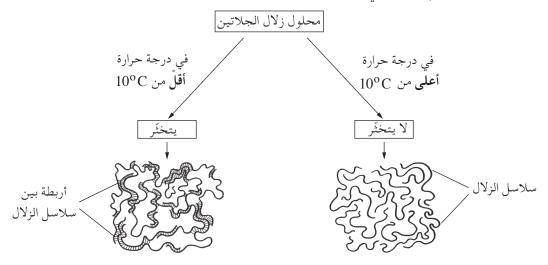
- קרא את ההנחיות ביסודיות, ושקול היטב את צעדיך.
- 2. רשוֹם בעֵט את כל תצפיותיך ותשובותיך (גם סרטוטים).
 - בסס את תשובותיך על תצפיותיך ועל התוצאות שקיבלת, גם אם הן אינן תואמות את הצפוי.

التّعليمات في هذا النّموذج مكتوبة بصيغة المذكّر وموجّهة للممتحنات وللممتحنين على حدّ سواء.

ב הצלח ה! نتمنّى لك النّجاح!

المسألة 6

في هذه المسألة ستتناول نشاط إنزيمات تحلّل الزلاليّات.


في هذا النموذج، رُقّمت الأسئلة بالأرقام 72-61. عدد الدرجات لكلّ سؤال مسجّل عن يمينه.

أجب عن جميع الأسئلة في الدفتر.

القسم "أ" - تأثير مستخلص الأناناس على زلال الجلاتين

في صناعة الغذاء يُستعمَل زلال الجلاتين لتحضير الحلويات، لأنّ الجلاتين يتختّر في درجة حرارة أقلّ من 10°C ويكوّن نسيج جلي. في درجات حرارة منخفضة تتكوّن أربطة بين سلاسل الزلال إلى أن يتكوّن مبنّى شبكيّ، كما هو موصوف في الرسم التوضيحيّ 1، وبذلك يحدث تختُّر زلال الجلاتين.

الرسم التوضيحيّ 1: تأثير درجة الحرارة على تخثُّر محلول الجلاتين

تحضير مستخلص من ثمرة الأناناس

- ٧. بواسطة قلم للتأشير على الزجاج، اكتب "مستخلص أناناس" على أنبوب اختباريّ.
- على طاولتك مدقة وجرن وسكّين وملعقة صغيرة وطبق يُستعمل لمرّة واحدة فيه قطعة من ثمرة الأناناس.
 اقطع الأناناس إلى قِطع صغيرة، وبواسطة الملعقة الصغيرة انقل قِطع الأناناس والسائل الذي في الطبق إلى الجرن.
 - κ. تحت تصرّفك وعاء فيه مياه مقطّرة.

اكتب "ماء" على ماصّة 10 ملل. بواسطة الماصّة انقل 5 ملل ماء إلى الجرن.

- بواسطة المدقّة اهرس قطع الأناناس.
- انقل 5 ملل ماء أخرى إلى الجرن، واستمرّ في الهرس إلى أن تحصل على عجين.
- على طاولتك قمع وقطعة شاش. ضع القمع في الأنبوب الاختباري "مستخلص أناناس" وبطّن القمع بالشاش.

- بواسطة ملعقة صغيرة انقل مهروس الأناناس والسائل إلى القمع الذي في الأنبوب الاختباريّ.
- انقل 5 ملل ماء إلى الجرن. استعن بالمدقة لخلط بقايا المهروس بالماء وانقل كل محتوى الجرن إلى القمع.
 - اجمع أطراف الشاش واعصره بلطف كي تترشّح بقايا المستخلص في الأنبوب الاختباريّ.
 - ارم الشاش في وعاء النفايات.

فحص تختّر زلال الجلاتين

- 1. تحت تصرّفك كأسان تُستعملان لمرّة واحدة الواحدة داخل الأخرى. اكتب على الكأس الخارجيّة: "حوض الماء 1".
- اطلب من الممتحِن ماءً ساخنًا، وحضّر في الكأس الداخليّة حوض ماء تكون درجة حرارة الماء فيه في المجال $20^{\circ} C 37^{\circ} C$.
 - احرص على أن يكون سطح الماء في حوض الماء حتّى ارتفاع الخطّ المشار إليه.
 - r. أشر إلى ثلاثة أنابيب اختباريّة بالأحرف C ، B ، A.
 - تحت تصرّفك وعاء فيه محلول جلاتين وماصّة 10 ملل. اكتب "جلاتين" على الماصّة.
- ٥٠. بواسطة الماصّة "جلاتين" انقل 2 ملل من محلول الجلاتين إلى كلّ واحد من ثلاثة الأنابيب الاختباريّة C-A.
 انتبه: عليك ضخّ محلول الجلاتين ببطء لمنع تكوُّن فقاعات هواء.
 - ملاحظة: إذا تختّر محلول الجلاتين في الوعاء، توجّه إلى الممتحن.
- ن. تحت تصرّفك ثلاث ماصّات 1 ملل. اكتب على إحدى الماصّات "تريبسين"، واكتب على الثانية "مستخلص أناناس"، واكتب على الثالثة "ماء".

لمعلوماتك 1: التريبسين هو إنزيم يحفّز تحليل زلاليّات مختلفة، منها زلال الجلاتين أيضًا، إلى سلاسل قصيرة تُسمّى ببتيدات. الببتيدات \underline{Y} تتختّر في درجة حرارة أقلّ من 10° .

الرسم التوضيحيّ 2: تحليل الجلاتين إلى پپتيدات بواسطة إنزيمات

- التريپسين إلى محلول التريپسين التريپسين التريپسين التريپسين ، انقل 1 ملل من محلول التريپسين إلى الانبوب الاختباري A .
- بواسطة الماصّة "مستخلص أناناس"، انقل 1 ملل من مستخلص الأناناس الذي حضّرتَه إلى الأنبوب الاختباريّ B.
 - بواسطة الماصّة "ماء"، انقل 1 ملل ماء إلى الأنبوب الاختباريّ C.
 - اخلط محتوى الأنابيب الاختبارية بواسطة هزّها بخفّة.

- رد. تأكّد أنّ درجة الحرارة في "حوض الماء 1" الذي حضّرتَه في البند "١" هي في المجال 30°C−37°C ، وصحّعها حسب الحاجة .
 - أُدخل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 1".
 - سجّل الساعة ______، وانتظر 5 دقائق.
 - أثناء الانتظار نفِّذ تعليمات البند "‹د".
 - ‹د. على طاولتك وعاء مكتوب عليه "حوض الماء 2" فيه ماء بارد. اطلب من الممتحِن 5 مكعّبات ثلج، وأُدخِلها إلى حوض الماء.
- تأكّد أنّ درجة الحرارة في "حوض الماء 2" أقلّ من 10° C. إذا كانت درجة الحرارة أعلى من 10° C، اسكب قليلاً من الماء الذي في حوض الماء في وعاء النفايات، كي يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه. اطلب من الممتحِن مكعّبات ثلج إضافيّة وأضفها إلى حوض الماء.
 - 77. بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند "⟨□" ، انقل ثلاثة الأنابيب الاختباريّة C-A إلى "حوض الماء 2".
 سجّل الساعة _________ ، وانتظر 8 دقائق. أثناء الانتظار أجب عن السؤال "61. أ".
 - (5 درجات) 61. أ. حضّر في دفترك "الجدول 1"، وفيه مجرى التجربة التي أجريتَها، ابتداءً من البند "تا". اشمل في الجدول أيضًا عمودًا لكتابة النتائج.
 - تاد. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "٢٦"، أُخرِج الأنبوب الاختباريّ C من "حوض الماء 2"، وأَمِلْهُ بحذر على جانبه كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
 - (i) إذا لم يتختّر المحلول في الأنبوب الاختباريّ C أَعِد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى. بعد الانتظار افحص إذا تختّر المحلول في الأنبوب الاختباريّ C، واعمل حسب التعليمات في البند الفرعيّ (ii).
 - إذا لم يتخثّر المحلول توجّه إلى الممتحن.
 - (ii) إذا تختّر المحلول في الأنبوب الاختباريّ C انقل الأنبوب الاختباريّ C إلى حامل الأنابيب الاختباريّة، أُخرِج أخرِج الطّا الأنبوبين الاختباريّين B، A من "حوض الماء 2" وانقلهما إلى حامل الأنابيب الاختباريّة.
 - أجب عن السؤالين 61. "ب"-62.
 - (4 درجات) **61. ب.** اذكر في عمود النتائج في الجدول 1 الذي في **دفترك**، إذا "تخثّر" أم "لم يتخثّر" المحلول في الجدول 1 الذي في الختباريّة.
 - اكتب عنوانًا لعمود النتائج.

(3 درجات) 62. أ. اشرح ما هي أهمّية بقاء الأنابيب الاختباريّة C-A في "حوض الماء 1".

(6 درجات) ب. فسّر النتائج التي حصلتَ عليها في ثلاثة الأنابيب الاختباريّة C-A.

استعن في تفسيرك بقطعة "لمعلوماتك 1" وبالرسم التوضيحيّ 1 وبالرسم التوضيحيّ 2 أيضًا.

٢٥. انقل ثلاثة الأنابيب الاختباريّة C-A فقط إلى وعاء النفايات.

القسم "ب" - التجربة: إعاقة نشاط إنزيم من مستخلص الأناناس تحضير محاليل كبريتات النحاس بتراكيز مختلفة

لمعلوماتك 2: كبريتات النحاس يُعيق نشاط الإِنزيم الذي يحلّل الزلال.

- ، b ، a أشر إلى أنبوبين اختباريّين بالحرفين ، b ، a
- יח. تحت تصرّفك وعاء فيه مياه مقطّرة، ووعاء فيه محلول كبريتات النحاس بتركيز 2%، وماصّة 10 ملل "ماء".
- اكتب "كبريتات نحاس "2" على ماصّة 1 ملل، واكتب "كبريتات نحاس مخفّف" على ماصّة 1 ملل أخرى.
- بواسطة الماصّتين "كبريتات نحاس "2" و "ماء"، انقل إلى الأنبوب الاختباريّ a محلول كبريتات نحاس وماءً، حسب ما هو مفصَّل في الجدول 2.
 - اخلط محتوى الأنبوب الاختباريّ بواسطة هزّه بخفّة.
- بواسطة الماصّتين "كبريتات نحاس مخفَّف" وَ "ماء"، انقل من الأنبوب الاختباريّ a إلى الأنبوب الاختباريّ b محلولاً مخفَّفًا لكبريتات النحاس وماءً، حسب ما هو مفصَّل في الجدول 2.

الجدول 2

تركيز محلول كبريتات النحاس	حجم الماء (ملل)	حجم محلول كبريتات النحاس	الأنبوب الاختباريّ
	9	1 ملل محلول كبريتات النحاس 2%	a
	9	a ملل محلول كبريتات النحاس من الأنبوب الاختباري a	b

أجب عن السؤال 63.

(6 درجات) 63. احسب تركيز محلول كبريتات النحاس الذي نتج في الأنبوبين الاختباريّين b ، a . اكتب النتيجة في الجدول 2 الذي في نموذج الامتحان.

/يتبع في صفحة 6/

- ‹٥٠. رقّم خمسة أنابيب اختباريّة بالأرقام 1-5.
- 2. بواسطة الماصّة "مستخلص أناناس"، انقل 1 ملل من مستخلص الأناناس الذي حضّرتَه في القسم "أ" إلى كلّ واحد من أربعة الأنابيب الاختباريّة 1-4.
 - أُضف 1 ملل من المياه المقطّرة إلى الأنبوب الاختباريّ 5 بواسطة الماصّة "ماء".

כא. اقرأ بتمعّن كلّ تعليمة قبل تنفيذها.

انتبه: حسب هذه التعليمات ستنقل إلى كلَّ واحد من الأنابيب الاختباريّة 1-5 محاليل كبريتات نحاس بالتركيز المطلوب أو ماءً. في كلّ نقلة استعمِل ماصّة پاستير <u>نظيفة</u>، وبعد ذلك ضَعْها في وعاء النفايات.

تحت تصرّفك أربع ماصّات پاستير.

- بواسطة ماصّة باستير، انقل قطرتين من الوعاء المشار إليه بـ "كبريتات نحاس 2% " إلى الأنبوب الاختباري 1.
 - انقل قطرتين من محلول كبريتات النحاس من الأنبوب الاختباريّ a إلى الأنبوب الاختباريّ 2.
 - انقل قطرتين من محلول كبريتات النحاس من الأنبوب الاختباريّ b إلى الأنبوب الاختباريّ 3.
 - انقل قطرتين من المياه المقطّرة إلى كلّ واحد من الأنبوبين الاختباريّين 4، 5.
 - اخلط محتوى الأنابيب الاختبارية بواسطة هزّها بخفّة.
 - CE. بواسطة الماصّة "جلاتين"، انقل 2 ملل من محلول الجلاتين إلى كلّ واحد من خمسة الأنابيب الاختباريّة 1-5.
 - اخلط محتوى الأنابيب الاختباريّة بواسطة هزّها بخفّة.
 - $^{-}$ درجة الحرارة في $^{-}$ حوض الماء $^{-}$ هي في المجال $^{-}$ درجة الحرارة في $^{-}$ حوض الماء $^{-}$
 - أدخل الأنابيب الاختبارية 1-5 إلى "حوض الماء 1".
 - سجّل الساعة ______، وانتظر 5 دقائق.
 - أثناء الانتظار نفِّذ تعليمات البند " ح ".
- C7. تأكّد أنّ درجة الحرارة في "حوض الماء 2" أقلّ من 10°C. إذا كانت درجة الحرارة أعلى من 10°C، اسكب قليلاً من الماء الذي في حوض الماء في وعاء النفايات، كي يكون ارتفاع الماء في ارتفاع الخطّ المشار إليه. اطلب من الممتحن مكعّبات ثلج إضافيّة وأَضفْها إلى حوض الماء.
- بعد مرور 5 دقائق من الساعة التي سجّلتَها في البند "כκ"، انقل الأنابيب الاختباريّة 1-5 إلى "حوض الماء 2".
 - سجّل الساعة _______، وانتظر 8 دقائق. أثناء الانتظار أجب عن السؤال 64. أ.

- (10 درجات) 64. أ. انسخ الجدول 3 إلى دفترك.
- (1) انسخ إلى الأماكن الملائمة في العمود "أ" في الجدول 3 الذي في دفترك، التركيزين اللذين حسبتَهما في السؤال 63 (الجدول 2 في نموذج الامتحان).
 - (2) أكمل التفاصيل الناقصة في العمود "د".

الجدول 3

و	هـ	د	جـ	ب	f	
النتائج: حجم محلول البيتيدات		حجم	حجم	حجم	التركيز الابتدائي	الأنبوب
(ناتج تحليل الجلاتين)	$10^{ m o}$ C حرارة أقلٌ من	محلول	الماء	مستخلص	لمحلول	الاختباريّ
(ملل)	(تخثّر / تخثّر جزئيًّا /لم يتخثّر)	الجلاتين	(ملل)	الأناناس	كبريتات	
		(ملل)		(ملل)	النحاس	
					(%)	
			0	1	2	1
			0	1		2
			0	1		3
			0	1	0	4
			1	0	0	5

- CA. بعد مرور 8 دقائق من الساعة التي سجّلتَها في البند "C7"، أَخرِج الأنبوب الاختباريّ 5 من "حوض الماء 2"، وأَمِلْهُ بحذر على جانبه كي تتمكّن من رؤية إذا كان المحلول قد تختّر.
- (i) إذا لم يتختّر المحلول في الأنبوب الاختباريّ 5 أُعِد الأنبوب الاختباريّ إلى "حوض الماء 2"، وانتظر 5 دقائق أخرى.
 - بعد الانتظار افحص إذا تختّر المحلول في الأنبوب الاختباريّ 5، واعمل حسب التعليمات التي في البند الفرعيّ (ii).
- (ii) إذا تخثّر المحلول في الأنبوب الاختباريّ 5 اكتب مدى التخثّر في العمود "هـ" في الجدول 3 الذي في **دفترك،** وأَعد الأنبوب الاختباريّ إلى "حوض الماء 2".
 - أُعِد تنفيذ هذه التعليمات مع أربعة الأنابيب الاختباريّة 1-4، وأُعِدها إلى "حوض الماء 2".

فحص مدى تحليل الجلاتين إلى پپتيدات

اقرأ بتمعن البنود "١٥- ١٥" قبل تنفيذ التعليمات.

عليك أن تقيس حجم السائل الذي لم يتختّر في كلّ واحد من الأنابيب الاختباريّة 1-5. انتبه: هذا السائل هو ناتج تحليل الجلاتين إلى ببتيدات.

- د۱. بواسطة الماصة "ماء"، املاً ماءً في الأنبوب المدرَّج الذي تحت تصرّفك حتّى الخطّ المشار إليه (انظر الرسم التوضيحيّ 3).
 - ضع قمعًا في الأنبوب المدرَّج.

الرسم التوضيحي 3: أنبوب مدرَّج مشار عليه بخط

- ٢٥. أُخرج الأنبوب الاختباري 1 من "حوض الماء 2"، ونَشّف الجهة الخارجيّة للأنبوب الاختباريّ.
- اقلب الأنبوب الاختباري 1 فوق القمع وهزّه، كي ينسكب السائل الذي لم يتختّر (محلول الپيتيدات) في
 الأنبوب المدرَّج.
 - افحص ما هو حجم السائل (بالمللترات) الذي أُضيف إلى الأنبوب المدرَّج فوق الخطَّ المشار إليه.
- اكتب النتيجة في المكان الملائم في الجدول 3 الذي في دفترك. إذا تختّر كلّ الجلاتين ولم يُضَف حجم سائل إلى الأنبوب المدرّج، اكتب النتيجة 0.
 - أفرغ السائل الذي في الأنبوب المدرَّج في وعاء النفايات.
- CD. أُعِد تنفيذ التعليمات التي في البندين "C1-C1" مع أربعة الأنابيب الاختباريّة 2-5، واكتب نتيجة كلّ قياس في المكان الملائم في الجدول 3 الذي في دفترك. انتبه: الفروق بين أحجام السوائل التي أُضيفت إلى الأنبوب المدرَّج يمكن أن تكون صغيرة.

أجب عن الأسئلة 64. "ب" - 68.

(4 درجات) 64. ب. اكتب عنوانًا للجدول 3 الذي في دفترك.

(5 درجات) 65. ما هو المتغيّر المستقلّ في التجربة التي أجريتَها؟

(5 درجات) 66. أ. ما هو المتغيّر المتعلّق في التجربة التي أجريتَها؟

انسخ إلى دفترك الإجابة الصحيحة من بين الإجابات الأربع IV-I التي أمامك.

I. مدى تختُّر محلول الجلاتين.

II. تركيز مستخلص الأناناس.

III. مدى نشاط الإنزيم الذي يحلّل الزلال.

IV. حجم محلول الجلاتين.

(6 درجات) ب. ما هي طريقة قياس المتغيّر المتعلّق؟

- اشرح كيف تلائم طريقة القياس هذه قياس المتغيّر المتعلّق.

(5 درجات) 67. أ. في التجربة التي أجريتَها، تركيز محلول الجلاتين في الأنابيب الاختباريّة 1-4 هو عامل حُفظ ثابتًا. اشرح لماذا من المهمّ الحفاظ على هذا العامل بالذات ثابتًا في مجرى التجربة.

(3 درجات) ب. اذكر عاملاً آخر حُفظ ثابتًا في مجرى التجربة.

(6 درجات) 68. ما هو الاستنتاج الذي يمكن استنتاجه من نتائج التجربة التي نتجت في الأنابيب الاختباريّة 1-4؟

القسم "جـ" - تحليل نتائج تجربة: استعمال الفطر Beauveria bassiana لإبادة آفات في المزروعات

تُسبِّب حشرات معيّنة أضرارًا للمزروعات. بفضل الوعي المتزايد لجودة البيئة ولصحّة الإِنسان، يحاول العلماء إيجاد طرق لإبادة الآفات بوسائل ودّيّة للبيئة. إحدى هذه الطرق هي استعمال الفطر B. bassiana.

يُنتِج الفطر إنزيمات تحلّل الزلاليّات، التي تؤدّي إلى تحليل الغلاف الصلب لجسم الحشرات، المركّب من متعدّد سكّريّات ومن زلال. بواسطة التحليل الإنزيميّ للغلاف، يدخل الفطر إلى جسم الحشرة، ويُفرز موادّ سامّة تؤدّي إلى موتها.

التجربة 1

عَرَّض الباحثون مجموعتين من الحشرات لسائل يحوي خلايا فطر من صنفين. كلَّ مجموعة حشرات تعرِّضت لصنف مختلف للفطر. خلال 18 يومًا، فحص الباحثون نسبة موت الحشرات من المجموعتين.

نتائج التجربة معروضة في الجدول 4 الذي أمامك.

الجدول 4

ت الحشرات (%)	الوقت الذي مرّ منذ التعرّض	
فطر من الصنف "ب"	فطر من الصنف "أ"	(أيّام)
30	15	4
60	35	8
90	45	12
97	60	16
97	62	18

أجب عن السؤالين 69-70.

- (3 درجات) 69. أ. عليك أن تعرض بطريقة بيانيّة نتائج التجربة المعروضة في الجدول 4.
- أيّ نوع عرض بيانيّ هو الأكثر ملاءمة لوصف النتائج رسم بيانيّ متّصل أم مخطط أعمدة؟ علّل إجابتك.
- (7 درجات) ب. تحت تصرّفك ورقة ملمتريّة في الملحق المرفق. اعرض عليها بطريقة بيانيّة ملائمة النتائج المعروضة في الجدول 4.

(6 درجات) 70. أ. صف النتائج المعروضة في الرسم البيانيّ.

• . في معالجة ضابطة (ليست معروضة في الجدول 4)، فحص الباحثون نسبة موت حشرات كانت في نفس الشروط لكنّها لم تتعرّض لفطر من الصنف "أ" أو لفطر من الصنف "ب". اشرح ما هي أهميّة هذه المعالجة الضابطة.

أراد الباحثون أن يفحصوا مِمَّ تنبع الفروق التي وُجدت في نسبة موت الحشرات في التجربة 1 (الجدول 4). لهذا الغرض أجرى الباحثون التجربة 2.

التجربة 2

نمّى الباحثون صنفَي الفطر، كلَّ صنف على حِدة، على وسط تنمية فيه زلال الجلاتين. قاس الباحثون مستوى تحليل زلال الجلاتين بوجود كلَّ واحد من صنفَى الفطر.

وُجد في التجربة 2 أنّ مستوى تحليل زلال الجلاتين بوجود الصنف "ب" كان أعلى من مستوى تحليله بوجود الصنف "أ".

أجب عن السؤالين 71 _72.

(6 درجات) 71. اعتمد على مقدّمة القسم "ج" وعلى النتيجة التي نتجت في التجربة 2 ، وفسّر نتائج التجربة 1 .

(5 درجات) 72. الإنزيمات التي تحلّل الزلال موجودة في خلايا ثمرة الأناناس داخل عضيّات، ولا تكون حرّة في السيتوپلازما.

حسب نتائج التجربة التي أجريتَها في القسم "أ" ونتائج البحث الذي قرأتَ عنه في القسم "ج"، اشرح لماذا وجود هذه الإنزيمات داخل العضيّات هو أفضليّة بالنسبة لخلايا الأناناس.

يجب إلصاق ملصَقة ممتحن وملصَقة نموذج امتحان على الملحق الذي فيه العرض البيانيّ. سلّم للممتحِن النموذج الذي معك مع الدفتر والملحق الذي فيه العرض البيانيّ.

ت ہ لا ל ח ہ! نتمنّی لك النّجاح!

זכות היוצרים שמורה למדינת ישראל. אין להעתיק או לפרסם אלא ברשות משרד החינוך. حقوق الطّبع محفوظة لدولة إسرائيل. النّسخ أو النّشر ممنوعان إلّا بإذن من وزارة التّربية والتّعليم.