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Abstract

Accurate prediction of active sites is an important tool in bioinformatics. Here we present

an improved structure based technique to expose active sites that is based on large

changes of solvent accessibility accompanying normal mode dynamics. The technique

which detects EXPOsure of active SITes through normal modEs is named EXPOSITE.

The technique is trained using a small 133 enzyme dataset and tested using a large 845

enzyme dataset, both with known active site residues. EXPOSITE is also tested in a

benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound

ligands. EXPOSITE is shown to successfully locate the active site in most instances, and

is found to be more accurate than other structure-based techniques. Interestingly, in sev-

eral instances, the active site does not correspond to the largest pocket. EXPOSITE is

advantageous due to its high precision and paves the way for structure based prediction of

active site in enzymes.

Author Summary

In this paper, we present an improved technique to predict active sites in enzymes. Our

technique is based on changes of solvent accessibility that accompany normal mode

dynamics. We assert the technique strength using several enzyme datasets with known

catalytic residues. We show the technique successfully locates the active site in most cases,

and consistently surpasses the accuracy of other techniques. We show how the technique

is advantageous and paves the way for high precision prediction of active sites.

Introduction

Prediction of functional sites in proteins is essential for a range of bioinformatics applications

such as molecular docking, and structure based drug design. Traditional methods for predict-

ing functional sites include three approaches: 1). The first approach uses sequence homology

to find evolutionary conserved residues with functional activity. 2). The second approach uti-

lizes structural homology with other proteins of known function to locate functional regions.

3). The third and last approach uses geometry and physico-chemical attributes of the protein

structure and sequence to identify areas with functional activity.

Over the years, several techniques based on the third approach have been developed. These

techniques include LIGSITE [1], POCKET [2], POCKET-FINDER [3], SURFNET [4], CAST
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[5], PASS [6], Cavity Search [7], VOIDOO [8], APROPOS [9], LigandFit [10], 3DLigandSite

[11], MSPocket [12], Fpocket [13], McVol [14], Ghecom [15], PocketDepth [16], PocketPicker

[17], VICE [18], as well as consensus techniques which use a combination thereof such as

MetaPocket [19]. Other methods analyze the protein surface for pockets [20, 21], cavities [22–

24], and channels [25] using pure geometric characteristics, and do not require any prior

knowledge of the ligand or of sequence homology. Other computational techniques use geo-

metric characteristics in combination with physico-chemical traits. Such methods include

FOD [26], and Elcock [27] that analyze the hydrophobicity distribution under the assertion

that functionally important residues are often in electrostatically unfavorable positions. Simi-

larly, THEMATICS [28] uses geometric characteristics in combination with theoretical micro-

scopic titration analysis, while the methods of Goodford [29] and Rupert et al. [30], and

SiteHound [31] identify ligand binding sites based on analyses of the binding energies of

probes placed on a grid around the protein. Another purely geometric method, EnSite, uses

the proximity of catalytic residues to the molecular centroid to accurately detect the active sites

of enzymes with high accuracy [32].

When used in combination with sequence and structure homology, geometric techniques

are enhanced and prediction is improved. Some techniques use a vast combination of parame-

ters ranging from conservation, residue type, accessibility, 2D structure propensity, cleft

depth, B-factors, etc. to predict active site residues. Using such parameters, Gutteridge et al.

predicted the location of active sites in enzymes using a neural network and spatial clustering

[33]. Similarly Petrova et al. used Support Vector Machine with selected protein sequence and

structural properties to predict catalytic residues [34]. In both cases, about 90% of the actual

catalytic residues were correctly predicted. From these data it is clear, that one should rely on

sequence and structure homology when possible, and over the past decade, multiple methods

to detect binding sites and functional pockets based on geometric, structural, and genetic data

were developed [35–39]. Several webservers of ligand binding sites have also been constructed

and may be used to infer unknown ligand binding sites based on homology and other attri-

butes such as Pocketome [40], FunFold [41], scPDB [42], IBIS [43], Multibind [44], fPop [45],

and FINDSITE [46]. To date however, no comprehensive study comparing geometry based

techniques has been performed.

Normal-mode analysis is one of the standard techniques for studying long time dynamics

and, in particular, low-frequency motions. In contrast to molecular dynamics, normal-mode

analysis provides a very detailed description of the dynamics around a local energy minimum.

Even with its limitations, such as the neglect of the solvent effect, the use of harmonic approxi-

mation of the potential energy function, and the lack of information about energy barriers and

crossing events, normal modes have provided much useful insight into protein dynamics.

Over the past years, several techniques have been described to calculate large-scale motions

using simplified normal-mode analysis [47–51]. Based on these techniques, several executable

programs to calculate normal modes have been released, such as ElNemo [52], GROMACS

[53], and STAND [49].

Recently, several studies have drawn attention to the allosteric effect of ligand binding on

normal modes dynamics [54]. From these studies, a clear correlation between binding in the

native site and perturbation of normal modes was identified. The same allosteric effect of

ligand binding on molecular dynamics was also pointed out by Bhinge [55] and Ming [56]

which proceeded to use molecular dynamics simulations in predicting ligand binding sites. It

is based on these recent advances, that we became aware of the capacity of normal modes in

predicting active sites.

In this paper we present a novel structure based technique using normal modes to predict

the location of active sites in enzymes. The technique exploits the normal mode opening and
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closing motion of enzymes and the accompanied change of solvent accessibility and highlights

residues of the active site. The idea behind the presented technique is that active sites pockets

become exposed in normal mode dynamics (Fig 1).

The hypothesis that active sites are surrounded by a shell of flexibility is not new and has

been proposed in the dynamic lock-and-key model for biomolecular interactions. The shell of

flexibility allows the enzyme to adapt to its ligand through an induced fit. The hypothesis was

demonstrated in several studies notably by Weng et al. in a recent study on the flexibility of

enzyme active sites [57], and less recently by Babor et al [58].

The technique which detects EXPOsure of active SITes through normal modEs is named

EXPOSITE. The technique may also be used in association with other methods to rank geo-

metrically calculated pockets according to their solvent exposure. First, the prediction strength

of EXPOSITE is trained extensively in a dataset containing 133 enzymes with known active

sites from the Catalytic Site Atlas (CSA) database [59]. Then, EXPOSITE is tested in a dataset

containing 845 enzymes and found to be more robust than other structure-based techniques.

EXPOSITE’s high success rate is valuable for structure-based identification of active sites and

clearly shows the added value of using normal modes for finding active sites. The technique

does not attempt to withdraw from the importance of using genetic data, and clearly, a combi-

nation of both structural and genetic data would be more useful for predicting active sites than

any of them on their own.

Fig 1. Accessible surface changes in normal modes. Upon distortion along a normal mode, different

pockets experience different changes of accessible surface. In the shown example, the accessible surface of

pockets 1 and 2 does not significantly change. However, the accessible surface of pocket 3 significantly

changes to a larger extent than pocket 4. The solvent accessible surface is represented as red squares.

doi:10.1371/journal.pcbi.1005293.g001
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Methods

Dataset assembly

To assemble a training dataset containing 133 enzymes with known active sites, enzymes were

selected from the CSA database [59], version 2.2.1. The dataset enzymes were selected accord-

ing to the following two criteria: 1). The enzyme active site is known from the literature (LIT),

and not derived by homology. 2). The biologically active enzyme is composed of a single poly-

peptide chain and a single oligomerization state.

To assemble a test dataset containing 845 enzymes, enzymes were selected from the CSA

database [59], version 2.2.1. The test dataset was compiled by extracting chain A of all LIT

entries that were not included in the 133 training dataset. These two datasets were used for

training and testing EXPOSITEs prediction consistency respectively.

Normal mode calculations

To calculate normal modes of the dataset enzymes, two programs were utilized namely

STAND [49] and ElNemo [52] and were run locally. For STAND, both real normal modes

(REA) and Tirion modes (TIR) were calculated. For speed, the STAND option of coarse grain-

ing, 1 point (1 pt), which accelerates the calculations yet does not flaw the results was used,

and defaults values of deformation amplitude were used. For ElNemo, default values of

DQMIN -100 and DQMAX 100 were utilized. The DQMIN and DQMAX parameters corre-

spond to the deformation amplitude in the direction of a single normal mode. For both

STAND and ElNemo, deformation amplitudes were not scaled, and the same amplitude pro-

duces smaller deformation for larger molecules. For both STAND and ElNemo, only the 10

non-trivial lowest frequency modes were calculated. For each of these 10 modes, 40 PDB files

were generated by STAND and 10 PDB files were generated by ElNemo all distorted along the

particular mode. The two methods are very different in that STAND (REA) minimizes the

structure and then calculates modes in φ and ψ torsion angle space whereas STAND (TIR) and

ElNemo avoid minimization by using Tirion modes [50] and then calculate modes in Carte-

sian coordinate space. For STAND, the opposite extremes of the harmonic motion were

empirically chosen as the 1st and 14th structure out of 40 respectively. At these extremes, the

structures look fully “distorted” from each other. For ElNemo, the opposite extremes of the

harmonic motion are the 1st and 10th structure out of 10.

Solvent accessible surface calculations

To calculate the solvent accessible surface (SAS) area of amino acids in the generated PDB

files, the DSSP program was used [60]. For each mode, SAS for each residue in the two struc-

tures at opposite extremes of the harmonic motion were calculated, and the absolute change of

SAS between the extreme mode distortions, |ΔSAS| was used.

Pocket calculation

To calculate pockets, LIGSITE [61] was run locally using default parameters. In each case, the

10 largest pockets were calculated and the pocket center as well as the pocket size were

collected.

Prediction of active site

The predicted active site was defined as the geometrical center (centroid) of the Cα coordi-

nates of all residues with a solvent exposure |ΔSAS|, in the range 20-40Å2
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The observed active site was defined as the geometrical center (centroid) of the Cα coordi-

nates of the active site residues specified in the CSA database [59].

The predicted and observed active sites were represented each by a single coordinate in

Cartesian space. The distance between these two coordinates was defined as the distance

between the predicted and observed sites.

The success of a prediction was based on the distance between the predicted and observed

sites in the training and test datasets. If the distance between the predicted and observed sites

was less than 12Å, then a prediction was considered successful. Conversely, if the distance was

larger than 12Å, then a prediction was deemed incorrect.

In the special case of the PLD dataset and for easy comparison with other techniques, a pre-

diction was considered successful if any atom coordinate of the ligand was within 4Å of the

predicted site. If no atom coordinate of the ligand was within 4Å of the predicted site, then the

prediction was considered wrong.

Comparison with other techniques

To compare EXPOSITE with other techniques, several software were run on all datasets

namely, the training dataset of 133 enzymes, and the testing dataset of 845 enzymes, as well

as a dataset containing 48 proteins derived from the PLD dataset [62] and engineered by

Huang et al [61]. First, each of the following software was downloaded: LIGSITE, CAST,

PASS, and SURFNET. For EnSite, no software was available, and the script was recon-

structed based on the algorithm described in the original paper [32]. Then, each of the soft-

ware was run locally on a PC running under Windows or Linux. In the case of the training

and test datasets (which lacks ligands), a prediction was considered successful if the pre-

dicted and observed active site were less than 12Å apart. In the case of the PLD dataset

(which contains ligands), a prediction was considered successful if the predicted active site

was less than 4Å apart from any ligand atom.

Results

Dataset assembly

To reliably assess the success rate of our technique in an sizeable ensemble, two datasets were

assembled from the CSA database [59]. The CSA database contains 23,265 enzymes with

known active sites. Of these, only 845 had an active site known from the literature (LIT), and

comprised the test dataset. Of these, only 133 were composed of a single chain that is biologi-

cally active as a monomer in a single oligomerization state, and comprised the training dataset.

The PDB IDs of the 133 selected enzymes of the training dataset are listed in S1 Table. The

PDB IDs of the 845 enzymes of the test dataset are listed in S2 Table. To test for homology

within the datasets, the enzyme commission (EC) numbers were retrieved. Although, some

homologues were found within a single dataset, no homologues were found between the train-

ing and test dataset.

Calculation of pockets and solvent accessible surface

A number of programs were tested to calculate geometric pockets of biomolecular structures,

i.e. POCKET [2], LIGSITE [1], POCKET-FINDER [3], SURFNET [4], CAST [5], PASS [6].

The program LIGSITECSC [61] provides a list of pocket centers and size in a PDB format and

was subsequently utilized in all our calculations.

Surprisingly, there are significant differences between SAS of residues calculated by DSSP

and other techniques such as ENCAD, CNS, and Accelrys. These differences arise from the

Normal Modes Expose Active Sites in Enzymes
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different approaches used in calculating SAS. Nonetheless, when calculating the change of sur-

face areas, ΔSAS, these differences cancel out and all programs produce comparable ΔSAS

values.

EXPOSITE training

Biologically relevant modes are not always represented in the lowest frequency modes. Sam-

pling more data, i.e. by calculating more modes could provide better results. Similarly, chang-

ing the |ΔSAS| thresholds could also lead to a higher success rate by allowing more exposure

data to be included. To test this assertion and optimize the success rate of EXPOSITE the fol-

lowing parameters were varied: the threshold value of |ΔSAS| and the number of normal

modes sampled. The number of modes sampled was varied from 0 to 10 and the |ΔSAS| mini-

mum and maximum thresholds were changed from 0 to 60 Å2.

As seen in S4 Table, the optimal |ΔSAS| thresholds for ElNemo were around 20 and 40 Å2

respectively. Below the threshold of 10 Å2, normal exposure fluctuations contribute little to

EXPOSITE’s accuracy. Above the threshold of 40 Å2, exposure changes arise from the normal

mode tip effect (bond breaking and exaggerated exposure) and contribute little to the EXPO-

SITE accuracy. For STAND, the optimal |ΔSAS| threshold values were 20 and 40 Å2 respec-

tively. This difference of |ΔSAS| thresholds between STAND and ElNemo is due to the fact

that STAND uses coarse graining, inherently reducing the surface area, whereas ElNemo does

not. STAND uses coarse graining and represents each amino acid with a single bead, while

ElNemo uses a heavy atoms representation. In both cases, the maximum deformation ampli-

tude were not chosen and default values were used. Also, the maximum deformation ampli-

tude was not scaled in this study.

The optimal number of mode sampling peaks to a plateau around modes 8, 9, and 10 for

both STAND and ElNemo (S5 Table). Below this sampling number important information is

lost. Intriguingly, when using no threshold for |ΔSAS|, the accuracy of EXPOSITE is consis-

tently 86%, no matter how many modes are sampled.

Correlation of predicted and observed active site in 133 enzyme training

dataset

EXPOSITE uses solvent accessibility changes in normal-modes to predict the location of active

sites in enzymes. As seen in Fig 2, residues experiencing large accessibility changes (colored

cyan and green) are likely to be found in proximity to active site residue (shown in text). In

contrast, residues experiencing little exposure change (colored blue) are less likely to be found

in vicinity of the active site. The proximity between residues experiencing large |ΔSAS| and the

experimentally observed active site residues is an indicator of the precision of EXPOSITEs

prediction.

On average, the predicted and observed active sites in the training dataset are separated by

7.9 Å, and a standard deviation of 4.4 Å (S1 Fig).

The maximum success rate of EXPOSITE in the training dataset consisting of 133 enzymes

was 92%. Curiously, in the training dataset, the binding pocket coincides mostly with the larg-

est pocket (82%) but not always (18%). This finding accounts for the pitfall of other techniques

which rely on pocket size only for ranking.

Also interesting is the fact that no active site was found in pockets with a size less than 7 Å3.

Such pockets are too small to accommodate ligands and validate our convention of discarding

them as insignificant.

Normal Modes Expose Active Sites in Enzymes
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Correlation of predicted and observed active site in test dataset

Shown in Fig 3 is a histogram of distances between the predicted and observed active sites in

the 845 enzyme test dataset. In this dataset, the predicted and observed catalytic sites are

Fig 2. Solvent accessibility changes in normal modes highlight active sites of enzymes. Shown are

nine EXPOSITE predictions for the enzymes (A) 1mbb, (B) 1dj1, (C) 1bvv, (D) 1pgs, (E) 1pmi, (F) 1sca, (G)

1lba, (H) 1a8h, and (I) 132l of the training dataset. The predicted and observed active sites are indicated by

green and blue stars, and LIGSITE pockets are displayed as white spheres. In cyan and green are residues

experiencing large accessibility changes in normal modes, and in blue, are residues experiencing little or no

exposure change. Note that the predicted and observed active site are separated by less than 12Å. The figure

was prepared using Pymol.

doi:10.1371/journal.pcbi.1005293.g002

Fig 3. Line graph of distances between the predicted and observed active sites in the 845 enzyme test

dataset. The distances between the predicted and observed sites are plotted in blue, in green, and in red for

EXPOSITE, ENSITE, and LIGSITE respectively. The distribution of distances is shown on a logarithmic scale,

and emphasizes the added value of normal modes for prediction of active sites.

doi:10.1371/journal.pcbi.1005293.g003
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separated by an average of 9.2 Å, 11.5 Å, and 14.1 Å for EXPOSITE, ENSITE, and LIGSITE

respectively (Fig 3). Significantly, if a successful prediction is arbitrarily defined by a distance

cutoff of 4 Å, then the number of hits of EXPOSITE (16.1%) is almost double that of ENSITE

(8.7%). Similarly, if a successful prediction is arbitrarily defined by a distance cutoff of 3 Å,

then the number of hits of EXPOSITE (10.4%) is 2.4 times that of ENSITE (4.3%).

To test the robustness of EXPOSITE, we tested its success rate in a dataset containing 845

enzymes (S2 Table). Not surprisingly, the success rate is much lower than in the 133 enzyme

dataset. Reliably however, EXPOSITE is better that EnSite in predicting the active site by >2%.

The sharp decrease of prediction success rate in the 845 enzymes dataset is not surprising, as

the dataset does not discriminate between real homomonomeric enzymes with high success

rates, and homomultimeric enzyme assemblies with low success rates (close to 0). Even if sta-

tistically robust, the large 845 enzyme dataset does not reflect the real success-rate of prediction

techniques, and the smaller 133 enzyme dataset should be regarded as a more representative

alternative. The large 845 enzymes dataset is too diverse, and demonstrates the difficulty in

assembling representative datasets.

Correlation of predicted and observed active site in PLD dataset

EXPOSITE highlights the binding site of proteins of the Protein Ligand Dataset (PLD) pub-

lished elsewhere [62]. Shown in Fig 4 (and in S2 Fig) are a few examples of ligand binding site

Fig 4. Solvent accessibility changes in normal modes highlight the ligand binding site of proteins.

Displayed are EXPOSITE predictions of nine proteins (A) 1inc, (B) 1bid, (C) 1hew, (D) 1hfc, (E) 1imb, (F)

1mrg, (G) 1mtw, (H) 1ulb, and (I) 1rob from the PLD database. The predicted and observed binding sites are

indicated by green stars and red ligands respectively, and LIGSITE pockets are displayed as white spheres.

In cyan and green, are residues displaying large changes of accessibility in normal modes, and in blue, are

residues which display little or no change of exposure. Note that the ligand (in red) is within 4Å of the predicted

site (green star). The figure was prepared using Pymol.

doi:10.1371/journal.pcbi.1005293.g004
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prediction. Residues experiencing large accessibility changes (colored green) are likely to be

found in proximity to the ligand (colored red), whereas residues experiencing little exposure

change (colored blue) are further away. The proximity of residues with large accessibility

changes and residues of the observed active site is a success indicator of EXPOSITEs

predictions.

On average, the predicted and observed centers in the protein PLD dataset are separated by

7 Å with a standard deviation of 3.3 Å. Intriguingly, the separation in the PLD dataset is

smaller than that of the CSA dataset by almost 1 Å, and it is probably a flaw due to the hand-

picked nature of the PLD dataset.

Comparison to other techniques

To accurately and robustly compare EXPOSITE with other techniques, all other software were

run on all datasets namely the training dataset of 133 enzymes, the testing dataset of 845

enzymes. A prediction was considered accurate if the distance between the predicted and

observed sites was less than 12Å. If the distance was larger than 12Å, then a prediction was

considered inaccurate. The calculated prediction accuracies are listed in Table 1.

When compared to other geometric techniques EXPOSITE is advantageous due to its high

success rate. As seen in Table 1, EXPOSITE is only slightly better than EnSite at predicting

active sites and EnSite is still superior to EXPOSITE in speed as it is ingenious in simplicity.

Also note that prediction of binding sites in unbound proteins is less successful than that of

ligand-bound proteins simply because the ligands occupy and expose the binding site through

induced fit thereby easing its identification.

To accurately and robustly compare EXPOSITE with other techniques, all other software

were run on the bound and unbound PLD dataset [61]. A prediction was considered accurate

if any ligand atom was within 4Å of the predicted site. If no ligand atom was within 4Å of the

predicted site, then the prediction was considered inaccurate. The calculated prediction accu-

racies are listed in Table 2. The data for EXPOSITE and Ensite is reported by us, the data for

VICE was reported by Tripathi et al [18], the data for Fpocket was reported by Le Guilloux

et al. [13], the data for PocketPicker was reported by Weisel et al. [17], the data for LIGSITEcs,

CAST, PASS and SURFNET were first reported by Huang et al. [63]. Please note that EXPO-

SITE is not always successful, such as in the case of PDB 1igj, 3gch, 3mth, and 2tmn as may be

seen in Fig 5.

Intriguingly, the classically accepted metric for binding site prediction is 4Å, and we used

this metric in the classical PLD dataset when comparing the classical performance of EXPO-

SITE, Ensite, VICE, Fpocket, PocketPicker, LIGSITEcs, CAST, PASS and SURFNET (Table 2).

However, in the unclassical training and test datasets which were never tested before, we relied

on an unclassical distance of 12Å. The training and test datasets contain 20 times more pro-

teins than the hand-picked PLD dataset, and if the classical distance of 4Å was used, then the

Table 1. Percent success rate of predictions.

Method Training dataset (133 enzymes) Test dataset (845 enzymes)

EXPOSITE 92 74

EnSite 86 72

LIGSITEcsc 69 59

CAST 55 50

PASS 60 45

SURFNET 49 42

doi:10.1371/journal.pcbi.1005293.t001
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performance of all techniques sank drastically. To maintain good performances for all tech-

niques in the training and test datasets, the classically accepted metric for binding site predic-

tion was raised to an unclassical 12Å.

Generally speaking, the success rate in the handpicked PLD dataset is higher than in the

non-handpicked 845 test dataset. This discrepancy suggests that the PLD dataset was not ran-

domly picked, and could artificially increase prediction success rates.

EXPOSITE ranks active site pockets

EXPOSITE’s feature, of highlighting active sites is very useful for ranking pockets. Indeed,

the technique is capable of ranking enzyme pockets according to their degree of exposure in

normal mode dynamics. This ranking enables EXPOSITE to choose the correct binding

pockets from a list of pockets calculated by LIGSITE. The assumption that the active site

pockets is usually in the largest pocket [1, 4, 64] is being used by several pocket detection pro-

grams and the top site is generally the largest one. However, this assumption is not always

true and in several instances, the active site corresponds to the second, third, or fourth largest

pocket.

Table 2. Comparison of success rate for 48 complexed and 48 unbound protein structures.

Method Protein Ligand dataset (48 enzymes)

Unbound Bound

EXPOSITE 86 92

Ensite 84 86

VICE 83 85

Fpocket 69 83

PocketPicker 69 72

LIGSITEcs 60 69

CAST 58 67

PASS 60 63

SURFNET 52 54

doi:10.1371/journal.pcbi.1005293.t002

Fig 5. Failures to highlight the binding site of proteins. Displayed are EXPOSITE predictions of four

proteins (A) 1igj, (B) 3gch, (C) 3mth, (D) and 2tmn, from the PLD database. The predicted and observed

binding sites are indicated by green stars and red ligands respectively. In orange, cyan, and green, are

residues displaying large changes of accessibility in normal modes, and in blue, are residues which display

little or no change of exposure. Note that EXPOSITE failed to predict the binding site in these cases due to

multiple backbone breaks resulting in unusual modes (i.e. 3mth, 3gch), and to odd shaped protein structure

(i.e. 1igj). The figure was prepared using Pymol.

doi:10.1371/journal.pcbi.1005293.g005
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Discussion

EXPOSITE rationale

The rationale behind the success rate of EXPOSITE is fairly simple. For proper enzyme activ-

ity, protection from the surrounding water is often necessary as shown by normal modes clo-

sure of the active site. Proteins in general and enzymes in particular often act as environment

protectors. They envelop substrates to catalyze chemical reaction that would otherwise not

take place in aqueous solution. They conceal prosthetic groups to coordinate binding thus

increasing affinity which is negligible in water. They act as small shielding cases displaying

alternating motions of opening and closing to allow ligand entrance and protection respec-

tively. Throughout this motion, protein residues located at various distances from the active

site are exposed to the solvent to a different degree. Residues in proximity to the active site are

exposed more than those faraway. This idea lays down the foundation for EXPOSITE suggest-

ing the pocket closest to the maximum exposure center is the active site.

The change in solvent accessibility between the X-ray structure and the largest deformation

of either of the normal mode extremes could also have been used. However, the maximum

effect of motion is observed between the two extremes which vibrate around the X-ray struc-

ture corresponding to a local minimum.

EXPOSITE parameters

EXPOSITE takes into account several parameters such as accessibility change in normal

modes, centroid distance from pockets, as well as pocket size. Normal modes by their own vir-

tue take into account more parameters such as contact network and distances. Together, these

parameters resemble those used in neural network techniques [33, 34] where they are analo-

gous to accessibility, cleft depth, B-factors, etc. . . As much as these techniques seem different,

the analogy between the parameters is astounding.

Coarse graining does not decreases EXPOSITE success rate

The success rate is not affected by the different types of normal modes techniques, STAND

and ElNemo. The success rate remains unchanged even when STAND and ElNemo are used

in different combinations with accessibility calculators (i.e. ElNemo with ENCAD accessibility

calculator [65]. The success rate does not originate from the difference in the atomic represen-

tation used by ElNemo and STAND. In fact, when running STAND in full-atom representa-

tion the success rate remains unchanged. These data indicate that coarse graining which

ignores the amino acid type and accessible surface does not influence the success rate of

EXPOSITE. In fact, adding heavy atoms to the PDB files generated by STAND also does not

decrease the success rate of EXPOSITE. We conclude that coarse-graining and accessibility

calculation methods do not affect the success rate of EXPOSITE.

Caveats of EXPOSITE

Care should be taken when using our technique on structures composed of several domains.

Practical interpretation of normal modes of multi-domain structures tend to be problematic in

the sense that bending and twisting of one domain relative to another tend to overshadow

modes with biological meaning. One way to circumvent this problem is to run normal modes

of single domains to predict its active site. We excluded multi chain enzymes which are biolog-

ically active in oligomeric states from our CSA dataset. Similarly, care should be taken when

using EXPSOITE on structures with elongated termini or exceedingly flexible loops. Such

structures often present odd normal modes around these areas which tend to overshadow
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modes with biological meaning. Some strongly recommended ways to circumvent the problem

of exaggerated motion is simply to clip out (or edit out) the stretches and rerun normal mode

computation or to set an upper value for the cutoff of |ΔSAS| of 75 Å2 when calculating modes

with ElNemo (40 Å2 for STAND). The cutoff should minimize the effect of loose and flexible

termini with exaggerated exposure change. A complete list of success and failures is provided

in S6 and S7 Tables.

Binding site vs. active site

A distinction should be made between the concepts “binding site” and “active site”. Usually,

an active site is found in a single copy in an enzyme, while binding sites may be present in mul-

tiple copies in proteins. Thus, prediction of active sites and ligand binding sites are very differ-

ent, and whereas only one prediction is correct for enzymes, several predictions are correct for

proteins. To complicate things further, some enzymes are composed of multiple chains, each

equipped with a distinct active site, and so much care should be taken so as not to over inter-

pret a prediction. As a rule of thumb structure based predictions (EXPOSITE, EnSite, etc) are

more accurate in single chain polypeptide enzymes.

Absence of correlation between pocket size, substrate size, number of

residues with high accessibility change, and number of active site

residues

In an attempt to correlate between pocket size and active site, the following parameters of

active site were calculated in the PLD dataset: 1). The number of Cα atoms of the active site

was derived from the CSA database. 2). The number of heavy atoms in the substrate was calcu-

lated from the PLD database. 3). The number of residues of with high accessibility change was

calculated from EXPOSITE. 4). The size of the predicted pocket in Å3 was from LIGSITE.

These parameters all reflect on the size of the active site yet there is no obvious correlation

among them. There was no correlation (R = 0.12) between pocket size and the number of

active site residues. This is partially due to fractionation of active sites into adjacent pocket

(POK) which decrease “real” active site size. This fractioning of active sites is a problem often

encountered in pocket calculating programs. Adjoining sizes of vicinal pockets did not

improve the correlation significantly.

Conclusion

Over the past years normal modes have enjoyed a revival. In this article, the biological rele-

vance of normal modes is illustrated in a new technique. The presented technique exposes

active sites of enzymes with high success rates. As pocket detection methodologies normal

mode techniques improve so will our technique. In the future, EXPSOITE is expected to

become publicly available as a basic tool (website and/or program) for predicting active sites of

enzymes. The Perl code used in this study is freely available in the supplementary data. Note

that DSSP, LIGSITE, ElNemo, and/or STAND must be obtained from third parties, and that

the time bottleneck of the method is normal mode calculation.

Supporting Information

S1 Fig. Histogram of distances between predicted and observed active sites in the 133

enzyme training dataset. The distribution of distances between the predicted and observed

active sites is shown. Note that 92% of the predictions fall within 12 Å of the observed active

site.

(TIF)
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S2 Fig. Solvent accessibility changes in normal modes highlight active sites of enzymes.

Shown are four additional EXPOSITE predictions for the enzymes (A) 2pk4, (B) 1ulb, (C)

1stp, and (D) 1apu of the PLD dataset. The predicted and observed binding sites are indicated

by green stars and red ligands respectively, and LIGSITE pockets are displayed as white

spheres. In cyan and green, are residues displaying large changes of accessibility in normal

modes, and in blue, are residues which display little or no change of exposure. Note that the

ligand (in red) is within 4Å of the predicted site (green star). The figure was prepared using

Pymol.

(TIF)

S1 Table. List of 133 enzyme training dataset.

(DOCX)

S2 Table. List of 845 enzyme testing dataset.

(DOCX)

S3 Table. List of 48 proteins dataset derived from the Protein Ligand Database (PLD) by

Huang et al.

(DOCX)

S4 Table. Training of EXPOSITE using different solvent accessible cutoffs in the 133

enzyme test dataset.

(DOCX)

S5 Table. Training of EXPOSITE using different numbers of modes in the 133 enzyme test

dataset.

(DOCX)

S6 Table. List of success and failures of EXPOSITE in the 133 enzyme dataset.

(DOCX)

S7 Table. List of success and failures of EXPOSITE in the 845 enzyme dataset.

(DOCX)

S1 Code. Perl code used in the study.

(ZIP)
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