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The authors describe a transient phase during training on a movement sequence wherein, after an initial
improvement in speed and decrease in variability, individual participants’ performance showed a
significant increase in variability without change in mean performance speed. Subsequent to this phase,
as practice continued, variability again decreased, performance significantly exceeded the gains predicted
by extrapolation of the initial learning curve, the type of errors committed changed, and performance
became more coherent. The transient phase of increased variability may reflect a mixture of 2 (or more)
performance routines before the more effective one is set and mastered, presumably the setting up of a
sequence-specific representation. Both group and individual analyses indicated a departure from the single
process (e.g., power-law) model of learning. However, although similar phases appeared in the mean group
data, there was little correspondence to individual participants’ time courses, and the individuals’ gains in the
second low-variability phase were masked.
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Group learning curves for a variety of tasks, with averaging across
individual participants and across blocks of trials, are often charac-
terized by negatively accelerated, gradually improving performance
(e.g., speed and accuracy), accompanied by a decrease in performance
variability (Ashby, Ennis, & Spiering, 2007; Logan, 1988; Segalowitz
& Segalowitz, 1993). It is commonly assumed, implicitly or explic-
itly, that these curves well represent individual performance (Gallistel,
Fairhurst, & Balsam, 2004; Rickard, 2004).

Recent studies of individuals’ learning extending over hours or
days (Gallistel et al., 2004; Karni & Sagi, 2003; Korman, Raz, Flash,
& Karni, 2003; Rickard, 2004) suggest, however, that the acquisition
of a task involves multiple identifiable phases characterized by qual-
itatively and quantitatively different performance routines. One lead-
ing notion is that some of these performance changes are related to
transitions between two types of processing modes: an initial, con-

trolled, more effortful mode and eventually a more automatic mode
(Anderson, 1982; Chein & Schneider, 2005). In theories of cognitive
skill learning, these are often mapped into algorithmic and memory-
based processes (Logan, 1988), and it is debated whether these pro-
cesses can run in parallel (Rickard, 2004). Motor-skill-learning stud-
ies suggest that the transition between modes reflects in part a process
of concatenation of consecutive performance elements into one com-
plex unit through interactions between neighboring elements (coar-
ticulation; Sosnik, Hauptman, Karni, & Flash, 2004). Recently, a shift
in processing within the training session, occurring after a critical
number of task iterations, has been proposed as a necessary trigger for
individuals’ improvement between daily sessions (Hauptmann &
Karni, 2002).

Models of group-averaged performance gains may well represent
the individual data when individual performance is modeled as a
simple function (e.g., Estes, 1956; Estes & Maddox, 2005; Myung,
Kim, & Pitt, 2000). However, because transitions between perfor-
mance phases may occur, and because they may occur at different
time points during practice for different individuals, averaging across
participants may generate monotonic, gradually improving, group
learning curves, smoothing out these transitions (e.g., Rickard, 2004).

In some cases, the shift between phases can be abrupt, and the
signal-to-noise ratio at the individuals’ level can be large enough to
reliably identify the point of change (Gallistel et al., 2004; Rickard,
2004). However, such an identification algorithm is inapplicable in
cases where the variability is large compared with the improvement
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throughout training or in cases of gradual transitions (Touron, 2006).
In these cases, variability in itself, rather than mean performance, may
be an indicator for a transition (e.g., Rickard, 1999). A phase of
increased variability may arise either when a set of performance
routines is explored before the more effective one is set and mastered
(Thelen & Smith, 1993) or because of a mixture of coexisting per-
formance routines, for example, during a transition phase (Adi-Japha
& Freeman, 2000; Rickard, 1999).

Previous research suggests that when a single learning process is
at work, a power function represents the group-averaged perfor-
mance curve well (Newell & Rosenbloom, 1981). However, for a
single process model to hold true, one expects that a power
function may also represent the individuals’ decrease in variance
(standard deviation) well (Logan, 1988; Rickard, 1999) and that a
linear relationship occurs between performance time and its stan-
dard deviation (Wagenmakers & Brown, 2007) on an individual
level (and thus in group-average performance).

Here, we analyzed performance data in a single session of training
on a computerized version of the finger opposition sequence (FOS)
learning task, a task that has been extensively used as a paradigm in
both behavioral and brain imaging studies of the establishment of
long-term procedural memory (e.g., Dorfberger, Adi-Japha, & Karni,
2007; Fischer, Hallschmid, Elsner, & Born, 2002; Karni et al., 1995;
Korman et al., 2007; Walker, Brakefield, Morgan, Hobson, & Stick-
gold, 2002). In the FOS task, a five-movement sequence is fully
available to the participants in an explicit manner from the first
recorded trial, and the gains reflect increased skill of execution. Brain
imaging studies have shown that the brain activation in primary motor
cortex (contralateral to the performing hand) evoked by executing the
FOS undergoes a qualitative change—from a component movement
representation (chunking) to a coherent representation of the sequence
(Karni et al., 1995; Toni, Krams, Turner, & Passingham, 1998).
Moreover, it was proposed that, within the initial training session, the
attainment of asymptotic performance, in terms of speed, may reflect
in part a qualitative switch from a motor routine (task solution mode,
motor set) based on concatenation of consecutive performance ele-
ments toward a representation of the sequence in the motor system as
a specific, unitary movement routine (Korman et al., 2003).

We show that both group-averaged and individual data sets are
inconsistent with the hypothesis of a single learning process within a
session of practice. Moreover, our results suggest that the change in
performance mode and presumably the change in the representation
of the movement sequence in the motor system may be reflected in a
phase of increased performance variability (with no change in perfor-
mance speed) that can be reliably identified in the individual’s data.
Subsequent to this phase, performance was superior to the one pre-
dicted by a single power-law function fitted to the initial part of the
training session, the type of errors committed changed, and keypress
latencies indicated more coherent performance. Group-averaged data
may mask this qualitative change in performance.

Method

Participants

Seventeen psychology students (4 men), ages ranging from 19 to
26 years (M � 22.48 years), all right-handed, took part in the study
as part of their first year duties. None had a history of neurological
or musculoskeletal disorder or of medication use.

Task

A computerized version of the FOS learning task (Karni et al.,
1995), in which typing movements were substituted for the opposition
movements of the original task, was used (Walker et al., 2002; Fischer
et al., 2002). Participants were instructed to repeatedly type a five-
movement sequence, 41323, with the four fingers (thumb excluded)
of their right hand in a cued manner. One sequence was used through-
out the experiment. Participants completed 15 blocks; each block
included 10 sequences, with a 60-s break between blocks. The break
ended by a keypress following a get-ready tone. The time of each
keypress was recorded at 1-ms resolution using the SuperLab Pro
(1997) software package and keyboard. Participants had three
warm-up sequences guided by the experimenter in a slow, paced
manner. These sequences were not analyzed. The recorded sequences
were analyzed in terms of speed (performance time for the target
sequence) and accuracy measured by number of sequencing errors.

Results

Out of the 150 sequences, participants performed correctly on
137–148 sequences with an average of 6.45 errors per session. On
average, 3 outliers, defined as sequence times that differed from the
within-participant block-averaged sequence time by more than three
times the block standard deviation, were excluded from further anal-
yses. The series of responses subjected to further analysis ranged from
129 to 148 sequences (M � 139.08, SD � 5.14) per session.

Figure 1A shows a three-parameter power-law regression line
(sequence time � a � block�b � c) fitted against the group’s
mean blocked sequence time (average performance speed). Al-
though the fit was significant, R2 � .87 ( p � .001), the Wald–
Wolfowitz runs algorithm (Wagenmakers & Brown, 2007) that
tests whether the residuals of the power-function fit are random by
assessing the number of times their signs (positive or negative)
alternate, demonstrated a significant deviation from randomness, Z �
2.13, p � .03. Similar results (i.e., a significant fit to power law, R2 �
.87, p � .001, and a significant deviation of residuals from random-
ness, Z � 2.14, p � .04) were obtained when the data were first log
transformed, then averaged and anti-logged (Rickard, 1999). As can
be seen (see Figure 1A), there was an interval around Block 9
where the distance between actual values and the modeled curve
(residuals) deviated in a nonrandom manner but still within the
95% confidence limits.

Figure 1B shows the between- and within-participant variability.
The linear fit and the fit to a power function of the between-
participants standard deviation over the 15 experimental blocks
approached significance (R2 � .21, p � .09, and R2 � .26, p � .06,
respectively), indicating an overall reduction in variability. How-
ever, the linear trend of the averaged within-participant standard
deviation did not differ significantly from zero (� � .07, p � .8)
and the fit of a power function was very poor (R2 � .01), but the
fit to a cubic function approached significance (R2 � .45, p � .08).
The linear correlation between mean sequence time and within-
participant standard deviation was low and statistically nonsignif-
icant, r(15) � .38, p � .1. When estimated for each individual
separately, the correlations were significant only for 5/17 partici-
pants. To test whether the residuals of a linear regression of
within-participant standard deviation on mean sequence time are
random, we applied a runs test. A significant deviation of the
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residuals from randomness (Z � 2.14, p � .04) indicated that the
relationship between these two variables was not linear (Wagen-
makers & Brown, 2007). Altogether these analyses suggest that the
hypothesis of a single learning process was not supported by our
data. The runs test showed that necessary conditions were not met.

To identify performance changes beyond those predicted by a
single power-law model of the group-averaged data, we extrapo-
lated to the last four blocks of the session a three-parameter power
function fitted to the first few blocks (i.e., three, four, . . . , nine
blocks) (Rickard, 2007). In all analyses, the extrapolated values
fell within the confidence interval of each of the final four blocks
of the session. Thus, although the hypothesis of a single learning
process was not supported, a single power function fitted the
group-averaged data well. Therefore, a sequence-by-sequence
analysis of the individual data as well as of the group-averaged
data was undertaken instead.

At the individual level, the individuals’ mean variability in se-
quence time across the training blocks was large relative to the overall
improvement attained in the session (with a ratio of 0.76 � 0.84).
Point-of-change algorithms for the identification of phases (changes)
in performance were therefore inapplicable (Gallistel et al., 2004).

The method used instead was a combination of the critical
moment method adopted from the dynamic systems approach,
which allows one to assay a transient increase in variability with
respect to a smooth fit to the series of sequence times (van Geert
& van Dijk, 2002), and the extrapolation method (Anderson,
Fincham, & Douglass, 1999; Rickard, 2007). The logic underlying
the extrapolation method is that if more than a single process of
learning is at work, one expects that later parts of the learning
curve would significantly deviate from a model based on extrap-
olation from the initial part of curve. The critical moment method
was used to identify parts of the learning curves to which the
extrapolation method could be applied.

Sequence-by-Sequence Analysis: Individual Level

The variability of residuals with respect to a single power-law fit
(i.e., the standard deviation of the difference between the data
points and their power-law fit) was calculated using a moving
window five sequences long (van Geert & van Dijk, 2002). This
short window enabled a good localization of the point(s) of change
in variability and is the minimal effective window size for group-
ing data. The application of this window generated a set of par-
tially overlapping series of sequences, each series five sequences
long and staggered by one relative to its neighbors.

The calculation of variability of residuals generated a measure
of residuals variability, where the first value is the standard devi-
ation of residuals from Sequences 1 to 5 (t1 . . . t5), the second
value from Sequences 2 to 6 (t2 . . . t6), and so on. This set of
residuals’ variability yielded the following phases.

1. An initial (baseline) phase comprising a series of more
than 10 sequences (block size) with low residuals’ vari-
ability was identified in all 17 participants. The baseline
series extended over 17.11 � 6.51 sequences, starting, on
average, at sequence number 34.23 � 28.87 (see Figure 2,
data points within circles).

2. A second phase comprising a series of sequences show-
ing a significantly higher residuals’ variability, compared
with that of the baselines series, was also identified for
each individual (see Figure 2, data points within trian-
gles). The criterion for detecting a significant change in
variability was six consecutive sequences with residuals’
variability above the 95% confidence interval for the
baseline points (van Geert & van Dijk, 2002). The first
such series to emerge after the baseline series is shown in
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Figure 2 (data points within triangles). This series of
sequences was identified for 16/17 participants. The se-
ries extended over 11.43 � 2.96 sequences starting, on
average, at sequence number 69.5 � 28.19.

3. A decrease in variability was detected after the high-
variability Series 2 in 15/16 participants in which the
high-variability phase was identified. These series were
characterized by reduced residuals’ variability relative to
the preceding high-variability series and thus constituted
good candidates for testing with the extrapolation method
(see Figure 2, data points within squares). An extrapola-
tion of a three-parameter power law was fitted to the
initial part of the learning curve, from first sequence of
the session to the final sequence of the baseline series
(see Figure 2). Within the series of sequences composing
the third phase (with reduced residuals’ variability), a
subseries, more than 10 sequences long, with sequence
times significantly lower than the values expected from
the power-law extrapolation was identified for 14/15
participants (paired-samples t tests for each individual).
This last series extended over 18.14 � 6.04 sequences
starting, on average, at sequence number 100.29 � 21.18.1

Thus, for 14/17 of the participants (a significant majority, bino-
mial p � .02), we could identify a first phase of low residuals’
variability with respect to a power law fitted to the learning curve,
followed by a phase of increased residuals’ variability and a third
phase of low residuals’ variability. For these individuals, the
average residuals’ variability of the three phases was significantly
different, F(2, 26) � 48.88, p � .001, 	2�.79. Bonferroni post hoc
analysis indicated higher second phase variability compared with
the first and third phases, with no significant difference between
the residuals variability in the two low-variability phases (first and
third phases). These participants’ mean sequence times in the first

1 A similar analysis using a LOESS smoothing technique (with a 30%
window, quadratic fit) provided a significantly better fit to the data, t(13) �
3.66, p � .01, 	2 � .51, producing identical results in terms of the
variability phases. The second variability phase had significantly lower
variability when fitted by the LOESS than by the power law, t(13) � 7.29,
p � .001, 	2 � .80. When the analysis was repeated with the warm-up
sequences included, either with the LOESS or with the power-law fit, the
same three variability phases were identified, with performance in the third
phase significantly better than that expected by a power-law extrapolation
of the initial part of the curve, in 13 participants (i.e., 13/17, a significant
majority, binomial, p � .05).
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Figure 2. Performance of 8 individual participants that showed the three variability phases: A–D � best cases,
E–H � worst cases. Circled data points represent 11 or more consecutive sequences with low performance variability
(baseline sequences). These were followed by sequences with significantly higher performance variability (the first set
of sequences is shown, triangles). The latter are followed by 11 or more consecutive sequences with lower
performance variability (squares). A power-law model fitted to the initial part of the session, up to the last baseline
sequence, is in a bold line; its extrapolation is the dashed line. The four best and four worst examples are arranged
by their p values of comparison between the extrapolation and the data of the second low variability phase (squares).
Note that for Case H, a second phase of increased variability may be detected.
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and second variability phases were significantly higher than in the
third variability phase, F(2, 26) � 26.14, p � .001, 	2 � .67;
Bonferroni p � .04. Moreover, the mean performance in the latter
low-variability phase was significantly better than that expected by
a power-law extrapolation of the initial part of the learning curve,
t(13) � 7.97, p � .001, 	2�.83.2 We also ruled out the possibility
that random noise could explain our experimental results (details
of these analyses are available from Esther Adi-Japha).

Sequence-by-Sequence Analysis: Group Level

The comparison between the group-averaged and individual
data was run on the 129 sequences common to all participants. As
in the group-averaged blocked data, when a single power-law
model was tested, the mean sequence time was well fitted by the
model, R2 � .76, p � .001, but the runs test applied to the residuals
of the fit demonstrated a significant deviation from randomness,
Z � 5.04, p � .001.

When the procedure, described above, was applied for the
identification of the three phases of residuals’ variability with
respect to a single power-law function fitted to the to the group’s
mean sequence times, the three phases were identified and con-
sisted of Sequences 59–72, 87–97, and 103–128, respectively (see
Figure 3). An analysis of variance (ANOVA) showed significant
differences in residuals’ variability between the three phases de-
tected, F(2, 32) � 5.15, p � .02, 	2 � .24. The residuals’
variability of the second variability phase was significantly higher
than that of the first and third variability phases (Bonferroni, p �
.05), with no significant difference between the two low-variability
phases. A paired-samples t test indicated that the group mean
sequence times in sequences performed in the third phase (Se-
quences 103–128) fell below the values expected from an extrap-
olation based on the initial part of the training session (Sequences
1–72; see Figure 3), t(25) � 2.54, p � .02, 	2 � .25. However, the

corresponding values extrapolated from individually fitted power-
law functions did not significantly differ from the actual sequence
times for Sequences 103–128, t(16) � 1.16, p � .1. Furthermore,
paired-samples t tests indicated that only for 6/17 participants were
sequence times at the group-derived third phase (Sequences 103–
128) better than the values extrapolated from a power-law function
based on the initial part of the training session (Sequences 1–72).
These results were unchanged when the extrapolation was based
on fewer sequences, that is, 1–17, 1–18, . . . , 1–71, and the test
was restricted to the 14 participants who showed the three
variability phases. Overall, for 10 of the 14 participants, in
which all three phases were reliably detected on an individual
basis, at least one phase was mislocalized by the groups’ mean
residuals’ variability analysis. Three additional participants
failed to show the three phases altogether. Thus, the identifi-
cation of performance variability phases by the group-averaged
data was misleading in 13/17 participants.

Behavioral Indications for Transition Between
Performance Routines

There were two behavioral indications for a transition between
performance routines during the training session: error analysis and
keypress latencies analysis, both analyses applied to sequences in the
blocks comprising the three variability phases. Errors were classified
as either between-sequence errors, relating to the transition from one
to the next sequence, or within-sequence errors. Omissions of the
first or final sequence key, exchange of either of those keys with
a different key (but only when the fourth key was correct), or
repetition of the final sequence key were considered between-
sequence errors. All other errors were considered within-sequence
errors. The 14/17 participants for which the three phases were
identified showed very few errors in the three variability phases
(.29, .63, and .36 errors per 10 sequences in the first, second, and
third phases, respectively), with no significant differences between
phases. However, within-sequence errors were more frequent in
the first phase, whereas between-sequences errors were more fre-
quent in the third phase ( p � .01, sign-rank statistics; this pattern
of results remained unchanged when error rates were weighted by
the number of keys or shifts between keys).

Second, a 3 (phase) � 5 (keypress latency) repeated-measures
ANOVA showed a significant effect for phase, F(2, 26) � 20.67,
p � .001, 	2 � .61, reflecting a monotonic decrease in latencies,

2 The power function fit to the initial part of the session could be
influenced by some second phase sequences (before the criterion for
increased variability is met); this may possibly affect third phase extrap-
olation values. The extrapolations were repeated with a stringent variability
criterion on first phase points that shortened the length of this phase: First,
the minimal value of the residuals’ variability was identified for each
participant. Second, the first point beyond that minimal value, where the
residual’s variability was higher than its mean value by 1.5 (or more)
standard deviations, was identified. This point became the endpoint for the
extrapolation. The resulting extrapolation values were nevertheless signif-
icantly higher than the actual sequence times in Phase 3 for the 14
participants as well as for their averaged performance, t(13) � 6.61, p �
.001, 	2 � .77.
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with the first and second phases significantly different from the
third phase (Bonferonni, ps�.01). There was also a significant
effect for keypress latency, F(4, 52) � 10.34, p � .001, 	2 �
.44, and for the Phase � Keypress Latency interaction, F(8,
104) � 2.49, p � .02, 	2 � .16. Post hoc comparisons to assay
the interaction showed a significant interaction between the first
and second phases, F(4, 52) � 2.97, p � .03, 	2 � .13, and
between the first and third phases, F(4, 52) � 3.68, p � .01,
	2�.22. A similar analysis applied to the variability of keypress
latencies indicated a main effect of phase, F(2, 26) � 8.24, p �
.01, 	2�.39, with, however, a significant increase in variability
in the second phase, relative to the first and third phases
(Bonferroni, p � .02).

As a test for chunking or coarticulation, the latency of key-
presses in pairs of successive sequence elements was compared
within the three variability phases (see Figure 4). In all three
phases, the latency to the first keypress of the sequence (i.e.,
latency to 4) was significantly longer than the latency to the
second keypress, t(13) � 2.43, p � .05, 	2 � .31. The latency
to the third keypress was found to be significantly longer than
the latency to the fourth keypress only in the first variability
phase, t(13) � 2.60, p � .03, 	2 �.34. Next, the difference in
the latencies between successive keypresses in each phase was
computed and compared for pairs of variability phases. The
difference in latencies between the third and fourth keypresses
was significantly larger in the first phase than in the third phase,
t(13) � 2.16, p � .05, 	2 � .26.

Discussion

The current results show that the change in within-participants’
performance variability within a single training session of a motor
skill was not monotonic. This indicates a departure from standard
power-law models of skill learning (Newell & Rosenbloom, 1981)
as well as from the notion of parallel performance routines com-
peting throughout the whole session (Logan, 1988). Our results
also show that although a single power-law model fits the group-
averaged learning curve well, it may misrepresent the temporal
profiles of and even mask critical phases in the acquisition of the
task at the individual level.

Specifically, a transient phase of increased performance vari-
ability, preceded and followed by phases of low variability, was
identified in the individual participants’ performance. Performance
level following this increased-variability phase significantly ex-
ceeded the gains predicted by extrapolation of the learning curve
fitted to the initial part of the session. These results are inconsistent
with a single power-law model of individual learning. We propose
that increased performance variability, independent of perfor-
mance level, reflects a transition between performance modes, that
is, a phase during which two or more task performance modes are
tried in successive iterations of the task, (Thelen & Smith, 1993;
Touron, 2006) before the more effective mode is set to be subse-
quently mastered and represented in motor memory as a new task
routine.

There were independent behavioral indications for a transition
between performance modes during the transient high-variability
phase. First, within-sequence errors predominated in the initial
low-variability phase, whereas between-sequence errors predomi-
nated in the later low-variability phase. This result is consistent
with verbal reports elicited in the standard FOS task (M. Korman,
personal communication, May 2007) that the production of the
within-sequence movements becomes easier by the end of the
training session, but there is sustained difficulty in the end-
sequence and begin-sequence movements. Second, the pattern of
keypress latencies in the latter phases (i.e., the second and third
phases) were significantly different from the first low-variability
phase rather than just reflecting a monotonic reduction in average
latencies across the session. In the first low-variability phase, the
subsequence 323 (i.e., the latencies to the fourth and fifth key-
presses) could be clearly defined, because it was executed more
rapidly than the rest of the sequence (i.e., there was a significant
difference between the third and fourth keypress latencies; see
Figure 4). In contrast, by the third phase successive pairs of
within-sequence keypresses were performed at a similar mean
latency. Thus, in the latter phases, a concatenation of consecutive
movement elements (chunks, as expressed in the first low-
variability phase subsequences) may be superseded by a specific
representation of the whole sequence of movements, indicating a
more coherent within-sequence performance (Karni et al., 1998;
Sosnik et al., 2004).

The increased variance during the initial performance of a
novel movement sequence presumably reflects processes such
as trial and error and adaptation of performance solutions (e.g.,
Thelen & Smith, 1993) and in general a more controlled exe-
cution (Anderson, 1982; Chein & Schneider, 2005; Logan,
1988). The subsequent (first) low-variability phase reflects the
selection of a given task solution mode and its optimization as
a function of repetition. Assuming that minimizing variability
is a desired goal of the nervous system (Harris & Wolpert,
1998), a subsequent transient increase in performance variabil-
ity independent of performance level may indicate an early
stage in the establishment of a novel working routine, a set
solution for task performance. The proposal is that for a short
interval, a mixture of two performance routines is used and the
variance includes the variability from each routine in addition
to the variability due to the differences between the routines’
mean performance levels (Rickard, 1999; Touron, 2006). Ini-
tially, performance speed of the new routine may be slower than
that attained in the prior, more practiced routine, thus average

Figure 4. Latencies to keypresses: Analysis of pairs of successive keys.
�p � .05.
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speed gains are temporarily slowed (no significant difference
compared to the first low-variability phase). One should note
that although one phase of shifting toward a more coherent
performance routine was consistently identified in the current
study, other subsequent shifts may occur even within a longer
training session.

The switch in brain activity pattern in practicing the FOS task
(e.g., Karni et al., 1995; Toni et al., 1998) was related to the
attainment of the asymptotic phase of the learning curve, a notion
indirectly supported by subsequent behavioral data (Korman et al.,
2003). The current results suggest a new framework for interpret-
ing the brain imaging data by replacing the proposed asymptotic
performance criterion with objective variability-based criteria as
the indicator for the switch in sequence representation. Whether
our results can be extended to longer sequences or other sequence
learning tasks where the sequence is not explicitly instructed
before training (e.g., the serial reaction time task) and whether the
increased-variability phase occurs in other performance measures
such as force and acceleration (Krakauer & Shadmehr, 2006) need
to be addressed empirically.

In more complex cognitive task learning, changes in perfor-
mance parameters, especially nonmonotonic ones, are assumed
to mark the changing contribution of different cognitive pro-
cesses to performance (Chein & Schneider, 2005; Price, 2006).
The absence of such phases or untimely shifts between phases
may indicate impaired functioning and may result in a failure to
generate long-term memory (Hauptmann & Karni, 2002;
Touron, 2006). Thus, our results highlight the relevance of
individuals’ learning curves rather than the group-averaged data
as the basis for imaging data interpretation as well as for
designing effective training protocols.
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