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A B S T R A C T

The acquisition of sequential knowledge is pivotal in forming skilled behavior. Despite extensive research of
sequence learning, much remains unknown regarding what knowledge participants learn in such studies, and
how that knowledge takes form over time. By tracking eye-movements made before stimuli appear on screen
during a serial reaction time (SRT) task, we devised a method for assessing learning at the individual participant
level in an item-based resolution. Our method enables uncovering what participants actually learn about the
sequence presented to them, and when. Results demonstrate that learning is more heterogeneous than previously
thought, driven by learning both of chunks and of statistics embedded in the sequence. Also, learning develops
rapidly, but in a fragmented and non-sequential manner, eventually encompassing only a subset of available
regularities. The tools developed in this work may aid in further dissociating processes and mechanisms un-
derlying sequence learning and its impairments, in normal and in clinical populations.

1. Introduction

A fundamental prerequisite for acquiring a skill, from brushing teeth
to understanding speech, is the ability to chain together information
and actions into an efficient, unitized procedure. This ability is called
sequence learning. It has long been acknowledged in the field of psy-
chology (Lashley, 1951), but the paradigm most research of sequence
learning is based upon is the serial reaction time (SRT) task, introduced
in Nissen and Bullemer (1987).

In SRT, participants are given a mapping between stimuli and re-
sponses, and are required to follow it when presented with a stream of
stimuli. Unbeknownst to them, stimuli are presented in a repeating
sequential order. The typical finding of SRT is that response time (RT)
grows quicker with exposure to this order. Accordingly, RT sharply
slows down if the ordering is changed (interference effect) and returns
to its original speed if it is restored (recovery effect; Fig. 1A – fixed-
sequence group). These effects are taken as evidence that with exposure
to the stimuli stream participants learn the underlying sequential order,
thereby anticipating upcoming targets and acting upon them with en-
hanced speed and accuracy (Marcus, Karatekin, & Markiewicz, 2006).

A striking finding in SRT is that learning does not depend on explicit
awareness of the sequence (Nissen & Bullemer, 1987). Participants are
typically left with partial to no explicit knowledge of what they have
learned, and SRT had subsequently become one of the principle para-
digms for studying implicit learning (Destrebecqz & Cleeremans, 2001).

Because knowledge may be at least partially implicit, understanding
what is learned during SRT has been a considerable challenge in the
field. Significant progress has been made in uncovering the type of
knowledge acquired – whether it is the order of response selection or
the order of response execution that participants learn (for review see
Schwarb & Schumacher, 2012). Progress has also been made regarding
the mechanism driving this learning – whether participants form re-
presentations of chunks within the stimuli stream (Koch & Hoffmann,
2000), acquire statistical knowledge pertaining to that stream
(Jiménez, 2008), or both (Kirsch, Sebald, & Hoffmann, 2010). However,
what actual knowledge participants have acquired by the end of the
task remains unknown (Reed & Johnson, 1994).

To answer this question, a meticulous item-based analysis is needed
at the level of the individual participant. In this work we offer a new
method for dynamic item- and individual-based analysis of sequence
learning during an SRT task. It is based on a new metric of performance
in SRT, that of oculomotor anticipation.

In spatial SRT tasks, participants shift their gaze towards the loca-
tion of upcoming targets in direct proportion to their familiarity with
the sequence governing the task (Marcus et al., 2006; Vakil, Bloch, &
Cohen, 2017). The major effects of SRT, including interference and
recovery effects, can be found in such anticipatory gaze shifts just as in
RT (Fig. 1B – fixed-sequence group). Oculomotor anticipation, how-
ever, offers additional new possibilities of analysis in comparison to RT.
Mainly, the oculomotor signal informs on mistakes participants make in
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their anticipation of the stimuli sequence, information that does not
exist in RT. The rates and types of these mistakes provide insight on the
learning processes taking place while the task unfolds in time. Using
probabilistic analysis of correct and incorrect anticipation, we manage
to pinpoint which items are learned within an SRT sequence, and the
time in which this learning occurs.

In previous work we have demonstrated that two major types of
learning processes take place during SRT: statistical learning and se-
quence learning (Tal, Bloch, Cohen-Dallal, Aviv, Ashkenazi, Bar, &
Vakil, submitted). Statistical learning provides participants with un-
derstanding of the task “grammar”; that is, understanding what type of
target transitions could be expected and what type of transitions could
not take place in the current task. Sequence learning, on the other hand,
provides participants with knowledge of the specific sequence gov-
erning the task. The focus of the current work is on the evolvement of
sequence learning throughout SRT.

Naturally, when a single sequence drives the stimuli stream, as in
standard SRT, that sequence both dictates and conforms to the statis-
tical grammar of the task, and so statistical learning and sequence
learning facilitate each other and are difficult to tease apart. To isolate
effects of sequence learning from those of statistical learning, a control
group was therefore included in this study. In this group, the task sti-
muli stream was governed by the same statistical grammar as the
standard SRT task, but contained no fixed-sequence that could be
learned. This paper begins with an item-based analysis of these two
groups, highlighting the different outcomes afforded by sequence
learning. The remainder of the paper focuses on the standard SRT group
and the insights that can be learned on how sequence learning evolved
over the course of the experiment.

2. Materials and methods

2.1. Participants

Fifty-nine undergraduate students (37 females, mean age = 24.7,
range: 18–37) participated in the experiment for course credit or 30 NIS
(~$8.5 US). Participants encompassed two experimental groups. The
fixed-sequence group (n = 29) correspond to the “MA group” whose
data was originally collected in the experiment published in Vakil et al.,
(2017). The random-sequence group (n = 30) were recruited for this
study.

The study was approved by the ethics committee of the Psychology
Department in Bar-Ilan University, and each participant gave written
informed consent.

2.2. Stimuli

Four white squares, in diamond formation, were presented against
grey background on an LCD computer screen of 1680 × 1050 pixel
resolution (size 47 × 29 cm). A black dot indicating the target could
appear in the center of any one of the squares, or in neither. Squares
were of size 6 × 6 cm, and dots of 1.5 cm diameter.

2.3. Procedure

Participants were seated in front of a computer screen and were
asked that when targets (dots) appear on screen they locate them in
their vision as soon as possible and press a corresponding keyboard key.
Keys were keypad arrow keys that corresponded to target location: up
arrow for the top square, left arrow for the left square, etc. Each target
was presented for 3000 ms or until a key was pressed. A 500 ms screen
with no target acted as an inter-stimulus interval (ISI), separating the
disappearance of one target from the appearance of the next (Fig. 2A).

For participants in the fixed-sequence group (n = 29), target loca-
tions followed a fixed sequential order of length twelve, in which lo-
cation frequency and first order transition probabilities are counter-
balanced. Such an order is termed second order conditional (SOC) be-
cause the location of the next target is completely determined by the
last two locations in the stream, while only one or zero previous loca-
tions are not enough to predict the next target location (Reed &
Johnson, 1994). Two such sequences were used, sequence A: 3-4-2-3-1-
2-1-4-3-2-4-1 and sequence B: 3-4-1-2-4-3-1-4-2-1-3-2 (numbers corre-
sponding to location: 1-down, 2-left, 3-right, 4-up). Nine concatenated
sequences constituted one block (108 stimuli). The experiment con-
sisted of eight blocks in total, each starting from a different position
within the sequence: locations 1, 5, 10, 8, 4, 12, 1, 2 for blocks one to
eight respectively. Blocks one to six and eight were constructed from
one sequence, while the seventh block, called the interference block, was
constructed from the other. Participants were randomly assigned into
those whose main sequence was sequence A and their interference se-
quence was sequence B, and those who had it the other way around
(n = 15 & n = 14, respectively).

Fig. 1. A) In standard SRT (fixed-sequence group), RT drops throughout the learning phase (learning effect), but abruptly rises when the sequence is switched
(interference effect). When the sequence is reverted back to the original in the final block, RT is restored to its previous level (recovery effect). When there is no fixed
sequence governing the task (random-sequence group), a smaller learning effect is found in blocks 1–6. B) Percentage of correct oculomotor anticipations mirrors
learning, interference and recovery effects found in RT. Again, robust effects exist in the fixed-sequence group, while anticipations in the random-sequence group
reflects a smaller learning effect. Error bars represent SEM.
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For participants in the random-sequence group (n =30), an order of
648 target locations was designed so that it maximally mimics the lo-
cation statistics used in the fixed-sequence group, but without con-
taining a fixed sequential order. The order was obtained by computa-
tionally searching for an arrangement that maximally complies with all
desired statistical constraints, as are elaborated next. Resulting fre-
quencies are therefore close but not precisely uniform. First, all loca-
tions appeared at near uniform frequency (M = 25% SD = 0.3%).
Second, locations did not repeat back-to-back but all other first order
transitions (e.g. 1, 3 or 4 after 2) appeared at near uniform frequency
(M = 33.3% SD = 0.9%). Third, twelve triplets that constitute a re-
versal (e.g. 2-1-2, 2-3-2, 2-4-2, …) all occurred at a similar frequency
(M = 1% SD = 0.1%), comprising together 11.7% of the stimuli
stream, which is slightly higher than the 8.8% they constitute in the
fixed-sequence stimuli (due to one reversal that inhabits that order).
Lastly, all other second order transitions (e.g. 3 or 4 after 2-1) appeared
at near uniform frequency (M = 44.1% SD = 1.4%). The complete
stimuli order can be found in Supplementary Fig. 1. The goal of this
procedure was to isolate learning of stimuli statistics from learning of a
particular sequence. An order of only six blocks was used because the
seventh interference and eighth recovery blocks are irrelevant when no
fixed sequence is used.

2.4. Data acquisition

Participants' keypress times and eye movements were collected
throughout the experiment. Eye movements were captured using SMI
iView 250 RED Eye Tracker. Calibration was done at experiment onset
using a standard nine-point grid for both eyes.

2.5. Data analysis

The experiment is broken down into three phases: learning (blocks
1–6), interference (block 7) and recovery (block 8). Participants of the
fixed-sequence group underwent all eight blocks, while participants of
the random-sequence group underwent only the first six blocks. RT
corresponds to the time since stimuli appeared and until the correct key
was pressed. Trials of incorrect or no response were removed from

analysis (0.8% of the data).
Eye movements captured during ISIs underwent fixation analysis.

Fixations were detected using the SMI built-in velocity based algorithm.
They were found in 99% of ISIs. Fixations were considered anticipation
of an upcoming target in the target location that they were closest to,
effectively dividing the screen into four distinct areas of interest (AOI;
Fig. 2B). When fixations were detected in more than one AOI during a
single ISI (56% of ISIs) the first fixated AOI was predominantly that of
the previous target location (91%). Fixations were found in more than
one novel AOI only in 5.1% of ISIs. Therefore, when more than one AOI
was fixated during an ISI, AOIs fixated last were considered the parti-
cipant's anticipation for analysis.

Throughout the paper, in cases in which sphericity was violated
according to Mauchly's test (p < .05), Greenhouse–Geisser corrected
values are reported.

2.6. Item-based analysis of sequence learning

In SOC sequences, the task stimuli stream is completely predictable
based on second order transition probabilities. Each pair of neighboring
targets is a “predictor” of a specific target that follows them. For
complete learning of a sequence of length twelve, participants therefore
need only learn where to orient their gaze after each of twelve pre-
dictors, i.e. twelve responses to twelve different stimuli. Each such
triplet is one item of the sequence. In this analysis we therefore focus on
where participants shifted their gaze following encounter with each
stimuli pair, and treat this as their “response” to the pair (Marcus et al.,
2006). We consider a participant to have learned a response if, when-
ever a pair of stimuli is seen, the participant consistently performs that
response. Also, to be regarded learned, this response should persist until
the end of the learning phase.

Therefore, per each pair of stimuli in the stimuli stream, each par-
ticipant's responses are examined in all learning phase ISIs following its
appearance (“relevant responses” in Fig. 3A). There are four possible
target locations on screen, and so chance probability of producing any
response is 25%. We examine all responses in this analysis, both correct
and incorrect ones. The amount of each response is checked for sur-
passing the amount expected by chance, within two separate windows.

Fig. 2. A) Experimental paradigm.
Participants are asked to press the arrow
key that corresponds to the location a target
dot occupies on screen. Target appearances
are separated by an ISI of 500 ms in which
there is no target. B) Fixation analysis. Gaze
location is tracked throughout the experi-
ment. Only fixations during ISIs are ana-
lyzed, but all eye movements, including
saccades, of a single participant throughout
two trials and the ISI in between them are
plotted here for illustration. The screen is
divided into four equally-sized triangle-
shaped AOIs based on proximity to target
location. In this example, a target appeared
at the bottom location on trial t, and indeed
the participant fixated around that location.
During the following ISI, fixations (marked
as larger blue circles, size reflecting fixation
duration) were detected in the bottom AOI,
and then in the left AOI. In the subsequent
trial t + 1, the next target appeared in the
left location, meaning that the fixation
during the ISI is regarded a correct antici-
pation in analysis. (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)
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Responses are examined under a global and under a local window,
starting from the same point in time. The global window encompasses
all ISIs from that point until the end of the learning phase, while the
local window covers only the nine ISIs coming after that same point
(nine appearances of each pair of stimuli extend the length of a single
experiment block). Significance is tested according to a right-tailed
binomial test, with chance level of 25% and p-values of p ≤ 0.05 and
p ≤ 0.01 for local and global windows, respectively. Starting from the
last nine ISIs, if both windows are significant, the response is considered
to have been learned (the two windows completely overlap in this in-
itial test, and so the stricter condition of the global window determines
de facto whether the response is classified as learned or not). If learning
is established, a search for learning onset is performed by shifting both
windows back in time (the global window growing, the local window
moving) until the earliest same response that satisfied the significance
criteria of both windows is found.

This method locates the first moment from which a participant
consistently responded in a certain way to a stimuli pair, i.e. in a sig-
nificantly above-chance rate. While the global window is seemingly
sufficient to test that, the local window ensures that significance is not
due to any particular segment of time, but rather that the behavior was
consistent in every step of the way. Otherwise, abundance of a single
response confined to one segment in time would bestow significance
upon large timescales, including remote chance responses. This method
is based on a simplified model of learning and so undoubtedly misses

some information, mainly in its binary classification of continuous
learning. However, we wish to show that it is nevertheless useful in
understanding how sequence learning unfolds over time. See Fig. 3 for
an illustration of the method and example results.

3. Results

We have analyzed learning of all possible responses (correct and
incorrect) for all stimuli pairs appearing in the stream. A breakdown of
this analysis is given in Fig. 4A.

3.1. Grammatical vs. ungrammatical learning

First, we have examined the grammaticality of learned responses.
Ungrammatical responses are those that do not conform to the statis-
tical rules governing the task (rules that are shared both by the fixed-
sequence and the random-sequence tasks). These responses are either
remaining in the location of the last target (“stuck”) or reverting the
location of the target before last (“reversal”). In contrast to the former,
reversals do appear in the task (there is one reversal in each sequence).
But, because transitions do not revert to the location before last in the
vast majority of the task (in over 90% of trials), having no reversals can
be considered part of the task grammar, and the odd reversal an irre-
gularity (Cleeremans & McClelland, 1991).

All participants have acquired substantially more grammatical

Fig. 3. A) Item-based analysis. The
neighboring targets 2-1 are a predictor
of an upcoming target 3 in the stimuli
stream (upper row; numbers corre-
sponding to location). A participant's
fixation location in between targets is
regarded her “response” to the targets
that preceded it (2nd row). In this ex-
ample the response 3, which happens to
be the correct response, is tested for
learning. All responses following the
predictor (relevant responses, 3rd row)
are examined together, as a binary
vector equal or not to the response
under examination (4th row). Response
consistency is examined in a local and a
global window for passing binomial
significance, with chance level of 25%
and p-values of 0.05 and 0.01, respec-
tively. Starting point moves back in time
until performance in at least one of the
windows is not significant. In this case,
the local window fails at the ninth re-
sponse. The first response from which
both windows are significant is there-
fore the eleventh response, established
as the learning onset of the response 3 to
the stimuli pair 2-1. B) Outcome of
analysis of correct responses in one
participant's data. Each line represents
correct anticipation of a single item of
the sequence (twelve overall)
throughout the entire learning phase
(averaged and smoothed over a sliding
window). Bold lines indicate correct re-
sponses that have been identified as
learned (their identity is given in the
inset), and red circles mark learning
onset. Non-learned items fluctuate
around 25% success rate, as would be
expected by chance. Only the three

learned responses break away from chance in a consistent manner until the end of learning phase. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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responses than ungrammatical ones (4.76 ± 2.56 vs. 1.31 ± 1.76, t
(58) = 7.72, p < 0.0001). Participants of the fixed-sequence group had
learned more grammatical responses than their counterparts (6 ± 2.10
vs. 3.57 ± 2.4, t(57) = 4.13, p < 0.001). This is because the fixed-
sequence group had learned more grammatical responses belonging to
the sequence driving their stimuli stream (either sequence A or sequence
B) than other grammatical responses (3.83 ± 1.69 vs. 2.17 ± 1.34, t
(28) = 4.04, p < 0.001). Participants of the random-sequence group,
on the other hand, had no preference for learning grammatical re-
sponses of sequence A or of sequence B (1.77 ± 1.45 vs. 1.7 ± 1.32, t
(29) = 0.27, p = 0.79).

An additional difference between the groups is found in their ac-
quisition of ungrammatical responses. While fixed-sequence partici-
pants and random-sequence participants learned reversals at the same
rate (0.62 ± 0.9 vs. 0.33 ± 0.66, t(57) = 1.4, p = 0.17), random-
sequence participants acquired more stuck responses than fixed-se-
quence participants (1.27 ± 1.64 vs. 0.38 ± 0.82, t(57) = 2.62,
p = 0.01). We believe this difference reflects the fact that stuck re-
sponses are not only an anticipation of upcoming targets, but also an
essentially different response in which no attempt of anticipation is
made. In other work of ours we show that wrong anticipation attempts
are more costly in RT than no anticipation attempts (Tal et al., 2020).
We believe that waiting for the next target without trying to anticipate
its location is a rational strategy when the correct location is yet to be
learned. Indeed, results from that work find that correct anticipations

increase at the expense of stuck anticipations as the SRT task pro-
gresses. This could be a possible explanation of why consistent stuck
behaviors are more prevalently found in the random-sequence group
than in the fixed-sequence group.

Taken together, these findings highlight the difference between the
learning processes that took place in the fixed-sequence task and the
random-sequence task. Both groups are afforded a grammar they can
learn (via statistical learning), but only the fixed-sequence participants
have a particular sequence they can learn (via sequence learning). In
the following sections we focus on sequence learning and how that had
evolved in the fixed-sequence group throughout the task, by focusing on
the responses these participants had learned that correspond to the
sequence driving their stimuli stream.

3.2. Anticipation of learned vs. non-learned items

Participants of the fixed-sequence group had learned to anticipate
3.86 ± 1.66 out of the twelve items comprising the SRT pattern
(32.2%). Learning occurred during the third block on average, (block
number M = 3.6, SD = 1.9).

To test our classification of learning, we compare anticipation due
to correctly-learned responses (learned items) to other anticipation
occurring in the task, due to non-learned or to incorrectly-learned re-
sponses (non-learned items; Fig. 5A). Note that correctly-learned re-
sponses do not always yield successful anticipation. They yield

Fig. 4. A) Heat-map of learned responses.
Rows represent participants, columns re-
present different responses, and color satura-
tion represents learning onset. The upper
group of rows belong to the fixed-sequence
participants that had sequence A as their main
sequence (n = 15). The middle group of rows
are fixed-sequence participants that had se-
quence B as their main sequence (n = 14).
The bottom group of rows are the random-
sequence group (n = 30). Vertically, columns
are divided according to their type. The three
leftmost groups of columns are grammatical
responses, corresponding to responses of se-
quence A (leftmost), of sequence B (middle)
and two additional grammatical responses
that do not appear in neither sequence. The
two rightmost groups of columns are un-
grammatical responses, divided into stuck
responses (remaining in the location of the
last target location) and reversal responses
(reverting to the location of the target before
last). B) Percentage of fixed-sequence parti-
cipants that had learned each of the correct
responses in their stimuli stream. Each re-
sponse is given as a prefix-response trajectory
and responses are sorted from most to least
learned. The three most learned responses
produce a natural horizontal “motion” from
one side to the other.
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incorrect anticipation during the interference block and occasionally
during transitions between blocks. Also, note that all anticipation of an
item is taken into account, including trials before learning onset, in
order to observe how learning evolved from the very beginning of the
experiment. So, for example, if a participant had learned the item 2-1-3
during block #4, all ISIs in the experiment that follow the appearance
of 2-1 will be considered learned item ISIs, regardless of whether 3
indeed followed them and whether they occurred before block #4.

Anticipations of learned and non-learned items were correct at
different rates during the learning phase (main effect of type: F(1,
28) = 209.81, p < 0.001, η2p = 0.88). The different rate at experiment
onset is partially due to an a-priori bias in gaze that some participants
had (Shimojo, Simion, Shimojo, & Scheier, 2003), enabling them cor-
rect anticipation of some items from the very beginning of the experi-
ment (see Temporal evolvement of learning for more details). Antici-
pations developed differently over time (interaction between type and
practice: F(2.9, 82.4) = 18.03, p < 0.001, η2p = 0.39). Correct antici-
pation of the subset of learned items rose from 46.2% to 83.3% on
average throughout blocks one to six (F(2.8, 77.4) = 24.63, p < 0.001,
η2p = 0.47). Correct anticipation of non-learned items also rose with
practice (F(5, 140) = 4.25, p = 0.001, η2p = 0.13), but more moder-
ately, from 21.8% to 23.7% on average.

Sequence interference affected behavior (F(1, 28) = 108.1,
p < 0.001, η2p = 0.79) differently for learned and non-learned items
(main effect of type: F(1, 28) = 127.8, p < 0.001, η2p = 0.82; inter-
action of type and block: F(1, 28) = 212.9, p < 0.001, η2p = 0.88), and
similar effects were found when the original sequence was restored in
the recovery phase. Behavior in non-learned items was modulated by
sequence interference (F(1, 28) = 46.45, p < 0.001, η2p = 0.62) and
recovery (F(1, 28) = 13.20, p = 0.001, η2p = 0.32), but, importantly, in

the opposite direction of typical SRT findings. Only anticipations of
learned items had become less correct when the practiced sequence
changed, and recovered when it was restored, indicating learning of the
sequence.

Notably, the high rate of correct anticipations that participants
reached for learned items indicates that results are not a mere artifact of
separating items with coincidental high performance. Surrounding
learning onset, participants performed the learned response during
52.8% of ISIs (SD = 17.7%). By the end of the experiment, the learned
response was performed during 83.3% of ISIs (SD = 13%). This con-
tinued steady incline in performing the learned response since learning
onset (t(111) = −14.59, p < 0.0001) suggests that these items were
indeed learned, and that classification is robust to our particular choice
of statistical threshold.

Additional indication that anticipation attempts of learned items are
different from those of non-learned items can be found in the proximity
these fixations have to the upcoming target locations (Fig. 5B). While
fixations of non-learned items tended to land at a stable distance of
5.07 ± 0.11 cm from the target throughout the experiment (F(3.3,
91.1) = 0.67, p = 0.58, η2p = 0.02), fixations of learned items grew
closer to the target over the learning phase (F(2.9, 80.6) = 4.27,
p < 0.01, η2p = 0.13). Interestingly, fixation distance to target under-
goes interference and recovery (F(1, 28) = 23.41, p < 0.001, η2p = 0.46
& F(1, 28) = 18.72, p < 0.001, η2p = 0.40, respectively). This suggests
that when the sequence changes, these fixations no longer reflect
knowledge of the target but rather an information seeking behavior,
similar to anticipation attempts of non-learned items (t(28) = −0.18,
p = 0.86).

Fig. 5. A) Breakdown of correct anticipations into those belonging to learned items and those that do not. B) Average distance between ISI fixations and target
locations, in learned and in non-learned items. C) Anticipatory behavior semantics. Following any two stimuli in the task, a fixation can be made towards four
different locations: the location that should follow according to the main sequence (“main anticipation”), the location that should follow according to the interference
sequence (“interference anticipation”), the location of the last stimulus (“stuck anticipation”) and the remainder fourth location (“alternative anticipation”). This
breakdown of anticipatory behavior is plotted in the left panel for learned items and in the right panel for non-learned items. Error bars represent SEM.
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3.3. Semantics of anticipatory behavior

The rate of correct anticipations cannot indicate whether sequence
shift was accompanied by any behavioral change, or rather whether
participants maintained their previous behavior despite different out-
comes. A deeper understanding of oculomotor behavior is afforded by
examining anticipated locations with relation to the context in which
they occur, instead of merely considering them a correct or incorrect
response. We therefore categorized ISI fixations based on the two sti-
muli that preceded the ISI. Fixations on the location that would follow
the previous two targets according to the main sequence were termed
“main anticipations”, on the location that would come next according
to the interference sequence “interference anticipations”, on the loca-
tion that the last target had occupied “stuck anticipation”, and on the
last fourth location “alternative anticipation” (Tal et al., 2020; Fig. 5C).

Main anticipations reflect learning of the main sequence (sequence
learning). Their production grew with practice within both learned and
non-learned items, but significantly more within learned items (main
effect of block: F(2.9, 81.7) = 26.36, p < 0.001, η2p = 0.49; main effect
of type: F(1, 28) = 197.27, p < 0.001, η2p = 0.88; interaction effect: F
(2.9, 81.6) = 17.77, p < 0.001, η2p = 0.39). Moreover, production of
main anticipations dropped with sequence interference and then re-
covered with sequence reinstatement only within learned items (F(1,
28) = 235.00, p < 0.001, η2p = 0.89, F(1, 28) = 40.17, p < 0.001,
η2p = 0.59 for interference and recovery within learned items, respec-
tively; F(1, 28) = 0.31, p = 0.58, η2p = 0.01, F(1, 28) = 2.08, p = 0.16,
η2p = 0.07, for interference and recovery within non-learned items,
respectively). This means that the signals indicating sequence learning
in SRT were almost entirely captured within the subset of ISIs (32.2%)
classified as belonging to correctly learned items. Importantly, classi-
fication depended on data from the learning phase only, and so inter-
ference and recovery effects (from blocks seven and eight) are in-
dependent of the training data and provide sound validation of the
classification.

Interestingly, during sequence interference, main anticipations of
learned items were not replaced by other responses equally, but were
predominately replaced with the new correct interference anticipation
(interaction between blocks six and seven and behavior type, con-
sidering interference, stuck and alternative types only: F(1.4,
40.5) = 16.04, p < 0.001, η2p = 0.36). This is an additional indication
of robust statistical learning achieved by this point of the experiment, as
the interference sequence is the only viable option according to the task
grammar once the main anticipation has been violated. We believe this
is not yet learning of the new interference sequence (and thank both
anonymous reviewers for their helpful insight on this matter), as fixa-
tion distance to target seems to indicate search during this block and
not knowledge (Fig. 5B). Nevertheless, it is remarkable that this be-
havioral adaptation was exclusive to correctly learned items (Fig. 5C,
left panel), as behavior following non-learned items was indifferent to
sequence changes (main effect of blocks six and seven considering in-
terference, stuck and alternative types only: F(1, 28) = 0.31, p = 0.58,
η2p = 0.01; interaction between blocks and behavior type: F(1.2,
34.7) = 1.83, p = 0.19, η2p = 0.06; Fig. 5C, right panel). This means
that stimuli pairs that had a correct learned response associated with
them were nevertheless more amenable to new learning when the se-
quence changed than stimuli pairs that were not learned to begin with.

3.4. RT to learned vs. non-learned items

The ability to tease apart trials corresponding to learned items from
those corresponding to non-learned items enables a re-examination of
the standard RT findings of SRT in finer resolution. A breakdown of RT
according to the type of trial it occurred in, as detected by our eye-
tracking method, is offered in Fig. 6.

RT declines with practice, regardless of whether it occurred in
learned or non-learned items (F(2.3, 65) = 23.05, p < 0.001,

η2p = 0.45). However, RTs differed between both types (F(1,
28) = 46.15, p < 0.001, η2p = 0.62). Specifically, there is a difference
in the effect practice had on them (interaction between block and trial
type: F(5, 140) = 6.84, p < 0.001, η2p = 0.20), as RT of learned items
dropped at a steeper rate as the experiment progressed. This difference
can be taken to represent the benefit that sequence learning grants
quickness of response. To the extent that the model used in this work
captures all learning in the task, the decline in RT of non-learned items
reflects all improvement in the task that is not a result of sequence
learning (Tal et al., 2020; Schwarb & Schumacher, 2012).

Corroborating this interpretation of the RT curves, RT of learned
and non-learned items is equivalent during the interference block, (t
(28) = 1.45, p = 0.16). Also, an interference effect in block seven is
evident only in RT of learned items (t(28) = −8.28, p < 0.001), and
not in RT of non-learned items (t(28) = −0.99, p = 0.33). However,
see Sequence learning distilled for a possible account of the small in-
terference trend existing also in non-learned RT. Therefore, the differ-
ence between the two curves enables an approximation of the distilled
effect sequence learning has on RT (Fig. 6B). After three blocks of
practice already, a steady benefit of roughly 70 ms is reached.

3.5. Temporal evolvement of learning

Our analysis allows examining what has been learned and when on
an individual and item-based resolution. A complete heat-map of these
results is given in Fig. 4A.

22.3% of sequence items were learned during the first block, 24.1%
during the sixth, and the remainder 53.6% during the blocks in between
quite uniformly (M = 13.4%, SD = 2.8% per block). While our method
may slightly bias late learning, as binomial significance is more easily
met in smaller windows than in larger ones, the high rate of learning
during the first block could not be explained as an artifact of the
method. Rather, it indicates either early acquisition of items in the
sequence, or a predisposition (a-priori to the experiment) to perform
the correct response in those items. We find evidence of both. In four-
teen cases, items were identified as learned from their very first oc-
currence. This means that performance was above chance in those items
throughout the entire experiment. It is hard to consider these items
learned, therefore, but rather maintained, as correct anticipation of
them was high from the very beginning (M = 86.5%, SD = 13.2%),
partially accounting for the difference between learned and non-
learned item anticipation from the very onset of the experiment. When
disregarding these fourteen items, learning onset of learned items oc-
curred at the 30.6 ± 15.0 encounter with them, and the first learning
each participant had made occurred after 18.4 ± 14.1 encounters with
the item.

With regards to the chronological evolvement of learning the se-
quence, we find no indication of concatenation. That is, we find no
tendency to learn responses adjacent to already learned ones. Instead,
participants appear to have learned items within the sequence in a
fragmented manner. This is particularly pronounced in early stages of
learning. Only one participant in our study had learned a second item
concatenated to the first (p < 0.05 under a binomial test, given the
chance probability of learning an adjacent item is 2

11
). Overall, we find

that the extent of concatenation throughout the task does not exceed
what would be expected by chance (Supplementary Fig. 2).

3.6. Individual-based and item-based differences

As mentioned before, participants have learned 3.86 ± 1.66 of the
twelve items presented to them (M = 32.2%, SD = 13.9% of the se-
quence). However, substantial individual differences are found.
Performance ranged from two participants that have learned only one
item, to one participant that has learned eight. Individual differences
are known to exist in statistical learning tasks and may underlie these
differences as well (see Clinical potential).
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In addition to differences across participants, a striking difference is
found between items. In both groups, certain items were learned by the
vast majority of participants, while others were learned by almost or
entirely none. An aggregated histogram can be seen in Fig. 4B. The
three most learned items consist of a horizontal trajectory of targets,
from one side to the other via the top or bottom positions. As had been
reported in Reed and Johnson (1994) chunks within the sequence that
correspond to movements that are likely to be familiar to participants
are more salient, and may be learned more quickly. Indeed, horizontal
trajectories had a 69.5% chance of being learned, while other items a
mere 24.6% (t(22) = 3.57, p < 0.01). Vertical trajectories did not,
however, muster a similar effect (t(22) =−0.98, p = 0.34). Lastly, two
reversals (items in which the third location is the same as the first)
inhabited the fixed-sequence stimuli stream, one in each sequence. Only
one participant learned a reversal item of the sequence. See Chunking
or statistical learning section for further discussion on the effects item
structure had on “learnability”.

4. Discussion

Eye tracking during an SRT task provided an ongoing indication of
anticipation towards upcoming targets in sequentially ordered stimuli.
Anticipation reflected an information gathering process at early stages
of learning, and then reflected knowledge when learning has been ac-
complished. Probabilistic analysis of this anticipation at an item-based
resolution uncovered what parts of the sequence each participant had
learned, and when that learning had taken place. According to this
analysis, participants that had a fixed sequential order in stimuli had
converged onto more consistent gaze responses than participants that
could rely only on learning the task statistical grammar. The responses
they have converged to corresponded to the sequence driving their
stimuli stream. Participants who were exposed to a fixed sequence have
learned, on average, a little under a third of the regularities making that
sequence. Also, learning of the sequence did not progress via clustering.
These findings suggest that the typical sequence learning effect found in
SRT is due to partial and fragmented learning of the target sequence. In
addition, the actual benefit of sequence learning to RT can be isolated
from other factors influencing it for the first time, and is found to
asymptote quite early in the experiment.

4.1. What is learned of the task sequence?

The analysis carried out in this work examined learning dependent

upon the minimally sufficient sub-sequence that can support it, which
in the current paradigm is two preceding stimuli. Learning of stimulus
transition probabilities of the first and second order (i.e. dependent
upon one or two previous stimuli) had already been demonstrated in
probabilistic versions of SRT, in which these probabilities were the only
rule governing the stimuli (Cleeremans & McClelland, 1991; Hunt &
Aslin, 2001). It had also been found to arise even when there was no
order governing the stimuli (Maheu, Dehaene, & Meyniel, 2019).
However, in deterministic SRT as in the fixed-sequence group, learning
can rely on longer regularities in the data. Our results show that par-
ticipants nevertheless rely on second order transitional probabilities for
learning, which is the most efficient option available to them.

The strongest evidence suggesting that second order transition
probabilities are learned comes from the interference phase, when the
sequence is suddenly replaced. Pairs of stimuli during this phase predict
to a high degree that participants carry out the response that fits the
main sequence. Because pairs are the largest segment shared between
the main and the interference sequence, what participants rely on to
make these responses cannot be more than two preceding stimuli. It
should be noted that this does not rule out the possibility that other
transitional probabilities were learned as well. We find evidence of first
order learning, but to a much smaller degree than second order, and
higher order transitional probabilities may have also been acquired but
that is impossible to detect in an SOC sequence. Also, statistics other
than transition probabilities are extracted and learned during the task
(Tal et al., 2020; Maheu et al., 2019; Reed & Johnson, 1994). However,
the current analysis reveals that learning derived from second order
transitional probabilities accounts for the lion's share of the sequence
learning effect observed in SRT.

4.2. Learning speed

Learning in this task can evolve quite quickly. Two presentations of
sequence items were sufficient for participants to begin responding to
some with above chance precision, mirroring similar findings in brain
imaging (Turk-Browne, Scholl, Chun, & Johnson, 2009).

This speed allows participants to adapt to a sequence and acquire it
to a certain extent within one block already. Hence, during the inter-
ference phase, participants not only abandon the practiced sequence,
but manage to respond correctly to the new sequence as well. Little
attention has been given in the literature to how participants process
the interference sequence. Our results suggest that replacement of the
old sequence is accompanied with high correct response to the new one,

Fig. 6. A) RT to learned and to non-learned items separately. RT improves at a steeper rate following correctly learned in comparison with other stimuli pairs. Also,
interference and recovery effects driven by sequence shift (blocks 6 vs. 7, and 7 vs. 8 respectively) exist only within responses following correctly learned stimuli
pairs. Sequence interference brings RT to learned items to the speed of RT to non-learned items, while the latter are almost not affected by sequence shift. This
suggests that RT improvement in non-learned items is not a product of sequence learning. B) Distilled sequence learning effect. The difference between RT to learned
and to non-learned items (RT benefit) isolates the contribution of sequence learning to RT. Error bars represent SEM.
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and so a portion of the effect sought after in RT is counteracted. The RT
interference effect therefore underestimates the actual contribution that
learning of the main sequence had in RT.

We were surprised to find that the swift adaptation to the new se-
quence during the interference phase was completely contained within
the same subset of items that were learned during the learning phase.
Responses that had been associated with certain stimuli pairs were
replaced with new responses, while responses to other stimuli pairs
remained quite indifferent to the change in sequence even though they
were “available” for a response to be associated with them. We believe
that the high associability of learned items exists in block seven because
learning is still in its initial stages. Wrong anticipation attempts induce
an error that facilitates error-driven learning, while non-learned items
have no such drive. However, we expect that longer practice would
cause entrenchment of the learned regularities, resulting in reduced
sensitivity to change – an intriguing pursuit for future study.

4.3. Fragmented learning

A novel outcome of our work, which had not been examined so far
to the best of our knowledge, is the order in which items in the se-
quence are learned. Sequence learning is believed to be the process
facilitating skill acquisition. A major characteristic of skills, such as
playing a musical piece or performing a somersault, is that producing a
single element from within them (positioning hands in a certain way
during a musical piece or bending the torso with a certain direction and
strength during a somersault) requires reproducing several, and some-
times even all, preceding elements. Therefore, it may be appealing to
imagine that sequence learning progresses via incremental concatena-
tion, forming a larger and larger inter-dependent learned pattern.
However, participants in our study learned the sequence in a frag-
mented manner. Items disjoint from one another were picked up as
practice progressed, with no apparent preference for neighbors.

Also, participants in our task had learned only a handful of the items
comprising the sequence, even though each was presented to them fifty-
four times during the learning phase. This finding supports the in-
dications found in Moisello et al. (2009) that only partial knowledge of
the sequence order is acquired during SRT. It also fits implicit learning
literature, in which it was shown that only a fraction of learnable items
are learned in any given experiment (Schlagbauer, Muller, Zehetleitner,
& Geyer, 2012; Smyth & Shanks, 2008).

Taken together, our finding suggests that learning during the SRT
task evolves in a quick and fragmented manner. Second order transition
probabilities are learned in isolation, not unlike what we would expect
if items were independently located in a stimuli stream in random
order. It is possible, however, that only initial stages of learning during
deterministic SRT are fragmented. Salient items are picked up very
early on, but then knowledge could be chunked together if sufficient
practice is provided (see next section). In either case, this finding, while
less intuitive, abides well with our understanding of attentional pro-
cessing. Attention is not homogenously distributed across time, as is
most clearly demonstrated in the attentional blink phenomenon
(Shapiro, Arnell, & Raymond, 1997). Allocation of attention at certain
moments would facilitate learning, but would also predict no learning
within several hundreds of milliseconds following these moments.
When exposed to a novel sequence of stimuli, all items are unfamiliar
and require attention to be learned. It is therefore reasonable that
preliminary stages of learning a sequence will be characterized by
isolated learned items, scattered across the sequence.

4.4. Chunking or statistical learning?

Our findings reveal that learning did not distribute evenly across all
items within the SRT task. Upon examination, one structure tying tar-
gets and the two stimuli preceding them quickly stands out as mean-
ingful in predicting learnability. Targets that were learned the most

were those that formed, with the two stimuli preceding them, a triplet
beginning on one side, finishing at the other, and appearing at the top
or bottom position in between. These trajectories are special in three
ways that may have facilitated learning.

Firstly, trajectories as described above evoke perception of hor-
izontal motion. Due to this motion illusion, participants have an a-priori
disposition to correctly anticipate their third location given the first two
(e.g. a target appearing first on the left and then on the top may
naturally trigger orientation of attention to the right). Thus, search time
for the correct response following this stimuli pair will be shortened.
This point underscores again that participants are not “tabula rasa”
when entering an experiment, and it is important to take into account a-
priori tendencies regarding natural stimuli when measuring perfor-
mance in laboratory settings (Siegelman, Bogaerts, Elazar, Arciuli, &
Frost, 2018). Secondly, we expect that horizontal trajectories stand out
in the stimuli stream, increasing the probability they will in fact be
learned. As found in Koch and Hoffmann (2000) and in Kirsch et al.
(2010), salient relational structures are exploited by participants during
the SRT task to form chunks of predictable responses. The horizontal
trajectories embedded in our task are likely to form such perceptual
structures and therefore get chunked together. Lastly, and not un-
related, horizontal trajectories should be more easily encoded in
memory than other “meaningless” trajectories.

These findings support the case of chunk learning (CL) in SRT over
statistical learning (SL; Du & Clark, 2017; Jiménez, 2008). However,
two major caveats to this account can be raised. Firstly, vertical tra-
jectories do not evoke the same effect that horizontal ones do. It seems
reasonable that this is due to an asymmetry in visual processing,
namely the Horizontal-Vertical Anisotropy (Corbett & Carrasco, 2011;
Feng, Jiang, & He, 2007). Performance in visual tasks is better along the
horizontal axis compared to the vertical one, supposedly granting
prevalence to horizontal movements over vertical ones in our experi-
ment. Also, this predisposition could be enhanced by reading patterns
(Feng et al., 2007). This study was conducted in Israel and therefore
participants' mother tongue is typically read horizontally (Hebrew,
Arabic or English). It could be that reproducing the study with parti-
cipants with a vertically read language (e.g. Japanese) would yield
different results. Proponents of the CL account can build on both these
hypotheses to claim that dominance of the horizontal over vertical
trajectories would cause the horizontal to be acquired first. Then, tri-
plets that have overlap with horizontal trajectories will in fact be more
difficult to learn due to the former's encapsulation into a single in-
divisible unit. Vertical trajectories all overlapped with horizontal ones
in this study, so the fact that they were learned so poorly can be sup-
porting, not conflicting evidence, for the CL account.

The second and more problematic caveat for the CL account, is the
fact that two back-and-forth patterns that exist in the current task (e.g.
bottom-left-bottom), elicited extremely poor learning. While it is rea-
sonable to expect that such reversals would constitute salient relational
structures and promote learning like motion trajectories do (Reed &
Johnson, 1994), in the current task they seem to have brought about
the opposite effect. In our opinion, reversals were particularly difficult
to learn because they are “ungrammatical”. Participants had learned
that three consecutive targets appear in different locations of one an-
other, and therefore orientation of gaze towards any of the last two
locations will lead to a mistake. Knowledge derived from SL prevented
knowledge acquisition via CL.

A major critique against CL is the finding that some chunks are
apparent from the very onset of the experiment, and hence do not re-
present learning (Du & Clark, 2017; Song & Cohen, 2014). The current
study may account for this. While some learning does appear to rely on
predisposed behaviors and not acquired ones, most learned items are
acquired within the task. Because we find that a few repetitions are
sufficient for learning, it is reasonable that chunks appear from the very
first block. Moreover, even though chunks may not grow in time (i.e.
they do not form longer learned sequences via concatenation), response
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to them does improve with practice, indicating that they are not a mere
pre-disposition but are continuously learned in the task.

To sum, it will be hard to explain our results as driven solely by
either CL or SL. Rather, they seem to point to mixed contribution of the
two mechanisms (Kirsch et al., 2010). Our results suggest that simple
surface statistics are picked up very early in the task along with salient
chunks in the stimuli stream. With practice, both mechanisms con-
tribute to acquisition of additional items in the stream, but not ne-
cessarily those adjacent to former chunks. Concatenation may be absent
in our results simply due to insufficient practice, and so additional
study of this task with extended practice is needed.

A methodological conclusion may be drawn from these findings.
Future studies wishing to examine learning of homogenous neutral
stimuli would be wise to control for ease of learning. Just as first and
second order statistics are controlled for, sequences should be com-
posed in such a way that structures that are a-priori beneficial, either in
perception or in response, are controlled for as much as possible.

4.5. Sequence learning distilled

The analysis undertaken in this work is one of separating signal
from noise. It reveals that the sequence learning signal sought after in
SRT research is larger than was previously thought. When considering
only correctly learned items, oculomotor performance rises and drops
by 37.1% and 54% following sequence practice and interference, re-
spectively. For comparison, the original effect reported in Vakil et al.
(2017) rose by 12.7% and fell by 6% only. In the domain of RT, in
which sequence learning is typically measured, our analysis shows that
practice improved RT of learned items by 132.8 ms on average and
subsequent interference made it 93.2 ms slower. In comparison, the
same effects were of size 115.5 ms and 50.3 ms respectively when
averaged across all trials.

The “noise” in the SRT task is no less valuable than the signal. Non-
learned items enable for the first time to measure RT to stimuli that is
predictable but nevertheless not learned. To asses learning of regula-
rities, studies typically use one of two control conditions. Performance
in practiced regular items is compared either to performance in un-
practiced regular items presented late in the experiment (as with the
interference phase in the current SRT paradigm), or to performance in
random items presented alongside the regular ones (e.g. Cleeremans &
McClelland, 1991). The former has the disadvantage of not comparing
similar time bins, and the latter has the disadvantage of comparing
items of a different nature. A control that is both regular and online was
thus far unavailable. Non-learned items provide this control because
they are of the exact same nature of the learned items and are en-
countered under the same levels of motor expertise and fatigue. They
also do not interfere with learning by signaling that the environment is
not regular or had changed, as random stimuli may. Moreover, non-
learned items constitute a control measurement that is tailored per
individual, and so does not rely on a-priori assumptions of what will be
learned and what not. This enables us to estimate that the true impact
of sequence learning on RT in our task is of roughly 70 ms. It is
achieved quite early in practice, and then maintained until the end.

Modelling both learned and non-learned RT curves as a declining
power law function (Logan, 1992) suggests that in our task, given ad-
ditional practice, both types of responses would asymptote at roughly
the same time, making only negligible improvement from the eight-
eenth block onward (<1 ms). Learning benefit would eventually sta-
bilize at a little over 80 ms. These analyses, in addition to their theo-
retical value, can be instrumental in future studies aiming to isolate
processes underlying SRT in brain or behavior.

Lastly, classification of learning in this work was based on proactive
oculomotor behavior. Although it generalized well into the domain of
reactive motor response, RT revealed at least one imperfection in the
oculomotor-based classification, in a slight interference effect in non-
learned items. It is not clear whether this is due to sequence learning

that had escaped our analysis, or rather to an overall slowing down of
RT resulting from the sudden change in the sequence governing the task
(Tal et al., 2020). The former case, however, may indicate learning that
was driven by covert shifts of attention (Posner & Petersen, 1990). Such
learning would not be detectable in the oculomotor signal and would
therefore be missed by our analysis method.

4.6. Clinical potential

An intriguing issue to study, following this work, is the consistency
of individual performance. If the capacity of learning in SRT proves a
reliable individual trait, i.e. if performance at one time predicts how
well the same individual will do another time, this analysis could form a
basis for a fine-resolution metric of sequence learning capability. Such
individual reliability had been found in several statistical learning
tasks, including probabilistic variants of SRT (Siegelman & Frost, 2015).
Surprisingly, it was not found in standard deterministic SRT, even
though other implicit motor learning tasks have proven stable (Stark-
Inbar, Raza, Taylor, & Ivry, 2017). As Stark-Inbar and colleagues have
suggested, that null finding could have been due to the inherent noi-
siness of RT. The method introduced in this work may be sensitive
enough to capture individual capacity of learning and prove reliable.
An individual score capturing fine-grained aspects of the sequence
learning process could help uncover what processes underlie SRT, in-
form on which are dissociable from one another, and tie these processes
to individual cognitive skills and brain structures.

A sensitive learning metric could also prove important on a group-
level analysis, especially regarding clinical populations. The SRT task is
modulated by numerous patient groups, such as Alzheimer and
Parkinson's disease (Ferraro, Balota, & Connor, 1993; Jackson, Jackson,
Harrison, Henderson, & Kennard, 1995), damage to basal ganglia
(Vakil, Kahan, Huberman, & Osimani, 2000), traumatic brain injury
(Vakil, Kraus, Bor, & Groswasser, 2002), developmental dyslexia
(Gabay, Schiff, & Vakil, 2012), children with damage to the cerebellum
(Berger et al., 2005), spinal cord injury (Bloch, Tamir, Vakil, & Zeilig,
2016) and more. The typical finding in all these cases is impaired
learning expressed either by a moderate learning curve (blocks 1–6) or
a modest cost with sequence shift (blocks 6–7). There is no differ-
entiation, therefore, between all these pathological groups because
there is only the single measure of RT to evaluate performance. The in-
depth analysis offered in this and previous work of ours can transform
SRT into a more sensitive diagnostical tool, as it provides several
measures in addition to RT: correct oculomotor anticipations, amount
of oculomotor anticipation attempts, number of items learned, learning
rate, etc. Hopefully, these measures would allow to create a unique
profile of each of the pathological groups, by characterizing their un-
ique performance profile. Characterizing individual and groupwise
differences will improve dissociation of the cognitive and neural me-
chanisms underlying learning, and thus advance our understanding of
learning difficulties in clinical and in normal populations.
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