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Objective: We investigated the effect of traumatic brain injury (TBI) on implicit sequence learning (ISL) and
its relation with demographic, clinical, and working memory (WM) capacity using an eye-tracked variant of
the standard serial reaction time (RT; SRT) task. Besides RT, this ocular SRT (O-SRT) task enables generation
of correct anticipations (CA) and stucks, reflecting other critical aspects of ISL. Method: ISL was tested in 26
individuals with TBI and 28 healthy controls using the O-SRT task. Mixed analyses of variance were
conducted to analyze RT and CA in three phases: learning, interference, and recovery from interference. The
average number of stucks was compared with an independent-samples t test. Finally, Pearson correlation
analyses of ISL with demographic, clinical, and WM capacity measures were performed. Results: Based on
RT, ISL was impaired in the TBI group. However, CA demonstrated improved learning, but with deficits in
the interference and recovery from interference phases. Stucks were more frequent in the TBI group, which
affected RT and CA measures. Neither demographic nor clinical factors were associated with ISL. Verbal, but
not spatial, WM capacity was impaired in the TBI group, and spatial WM capacity positively correlated with
ISL in controls only. Conclusion: We suggest that the high TBI group stuck rate can be attributed to lack of
initiative and/or conservative response bias associated with TBI, and view it as a main cause leading to deficits
in ISL. Unlike controls, the TBI group could not muster their relatively preserved spatial WM capacity to
support their ISL performance.

Key Points
Question: What is the question this paper addresses? Shedding light on inconsistent findings of
implicit sequence learning abilities in individuals with traumatic brain injury (TBI) using an eye
tracked version of the serial RT (SRT) task, which besides RT, provides two additional measures:
correct anticipations (CA) and stucks. Findings: What are the primary findings? Analyses of RT and
CA revealed impaired implicit sequence learning in TBI which was linked to a higher stuck rate and
associated with a lack of initiative and/or conservative response bias in TBI. Importance: What are
the key scientific and practice implications of the findings? Eye movement measures significantly
contribute to understanding implicit sequence learning abilities in TBI, as assessed with the SRT task.
Next Steps: What directions should be explored in future research? Evaluating the influence of other
factors on ISL in TBI, such as length of learning course as well as gender and long-term TBI effects.

Keywords: implicit sequence learning, procedural learning, eye tracking, SRT, TBI

Traumatic brain injury (TBI) is a health problem with growing
incidence worldwide (Dewan et al., 2018), caused by impact to

head or body that results in neuropathological damage. The frontal
and temporal lobes are particularly susceptible to injury because of
their location in the anterior and cranial fossa of the skull (Bigler,
2007), and predominantly impaired in TBI regardless of underly-
ing pathophysiology (Stuss, 2011). Furthermore, occipital regions
are also frequently affected along with subcortical regions, includ-
ing the hippocampus and basal ganglia (Bendlin et al., 2008;
Bigler & Maxwell, 2011). Besides damage to neuronal cells and
other neuropathology, TBI leads to axonal damage that impairs the
interconnection of different sections of the brain (Bigler & Max-
well, 2011; Mckee & Daneshvar, 2015).

TBI leads to serious consequences in cognitive, emotional, and
behavioral functioning (Azouvi et al., 2017; Mateer & Sira, 2007;
Mckee & Daneshvar, 2015). Frontal lobe injuries in TBI have been
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associated with lack of initiative, impaired organization and plan-
ning ability, impulsivity, disinhibition, lack of empathy, and more
(Stuss, 2011). Explicit memory impairment is among the most
prominent disturbances that occur following TBI (Vakil, 2005),
and has been studied extensively. In contrast, only a few studies
have been conducted to evaluate aspects of implicit memory such
as procedural or skill learning in individuals with TBI. Procedural
or skill learning is defined as learning which results following
repeated practice. It encompasses the learning of motor, cognitive,
and perceptually based procedures, including navigation, se-
quences, rules, categories, and probabilities. Procedures can be
acquired partly through explicit awareness, though primarily they
are considered to be learned implicitly, without conscious retrieval
of information regarding the procedure (Clegg et al., 1998; Reber,
1993). Different types of tasks have been developed that evaluate
various aspects of procedural learning. For an overview of the
most prevalently used tasks, see Gofer-Levi et al. (2014). In brief,
these assessment tools can be categorized according to their cog-
nitive and attentional demands (e.g., motor, cognitive, conceptual,
or perceptual; Vakil & Hoffman, 2004), and type of procedure
(e.g., rules, optimal sequence, probabilistic repetition of relations,
deterministic repetition of a given sequence).

To date, findings regarding procedural learning in TBI are
inconsistent. Due to the low number of studies conducted and the
different types of tasks used, as well as the wide range of time after
injury onset, it is challenging to draw clear conclusions. Most
studies that examined cognitive or conceptual procedural learning
assessed with the mental rotation task or tower of Hanoi puzzle did
not observe any remarkable deficits in TBI (Ewert et al., 1989;
Timmerman & Brouwer, 1999; Vakil & Lev-Ran Galon, 2014),
with the exception of Vakil et al. (2001). Similarly, the assessment
of perceptual procedural learning with an implicit matrix task or
the mirror reading task (Ewert et al., 1989; Nissley & Schmitter-
Edgecombe, 2002; Vakil & Lev-Ran Galon, 2014), as well as the
testing of manual motor procedural learning with the pursuit rotor
task (Ewert et al., 1989; Rigon et al., 2019) revealed no impair-
ments. However, in an oculomotor procedural learning task, def-
icits were observed in individuals with TBI (Kraus et al., 2010). In
this task, participants fixated on a center point, at each side of
which a target appeared in the same location in an even rhythm.
Participants with TBI anticipated those two targets significantly
less often prior to their appearance at their fixed location. Studies
that investigated implicit sequence learning (ISL), an essential
process underlying procedural learning, provided a mixed picture
of either preserved or impaired ISL in TBI (McDowall & Martin,
1996; Mutter et al., 1994; Vakil et al., 2002). ISL is commonly
assessed with the serial reaction time (SRT) task (Nissen & Bul-
lemer, 1987), which has become the hallmark task throughout
research literature. Unbeknown to participants, in this task they are
presented with four squares on the screen appearing in a repeated
spatial sequence. Participants are asked to respond as fast as
possible by pressing a key whose location corresponds to its
position in the appearance of the square. Following several learn-
ing blocks (usually 6), a block with a new sequence is presented.
ISL is generally expressed in two measures: the first is the de-
crease in RT during the learning blocks, which has been inter-
preted to reflect increased correct anticipation of the subsequent
spatial locations, and the second is increased RT when the new
sequence is introduced. The latter is considered to be a purer

measure of ISL, because the former, in addition to ISL, also
reflects general learning of the spatial location mapping of the
stimuli on the screen and its corresponding key press, which is
viewed as stimulus-response (S-R) mapping.

Despite wide use of the SRT task throughout research literature
assessing ISL in healthy and clinical populations, studies using this
task in TBI samples are sparse. Mutter et al. (1994) tested 12
controls and 23 individuals with TBI that were divided into a mild
(n � 11) and a moderate-to-severe TBI (n � 12) subgroup.
Whereas the mild group did not differ from controls, the moderate-
to-severe TBI group demonstrated impairments in sequence acqui-
sition. However, this group did not differ from controls when
asked explicitly to generate the learned sequence. In contrast,
McDowall and Martin (1996) tested individuals with severe TBI
(n � 20), and although the TBI group was generally slower, no
impairment was observed in the acquisition rate of the sequence,
compared to controls (n � 20). Deficits in both acquisition and
generation of the sequence were detected in the severe TBI group
(n � 20) studied by Vakil et al. (2002). In a follow-up analysis, the
authors observed an interference effect (i.e., increased RT when a
new sequence is presented) in all controls (n � 20), while only
about half of the TBI group showed this effect. Subsequently, the
TBI group was split into two subgroups according to whether they
did or did not show an interference effect. The TBI subgroups did
not differ in age, education or severity of injury, nor did any of
these measures correlate with the interference score. These results
imply that neither demographic nor clinical factors played a sig-
nificant role in ISL.

One aspect that may have contributed to the different outcome
of ISL in TBI is the rather wide range of time after onset. In the
study by Mutter et al. (1994) this variable ranged from 112–1,049
days, in the study by Vakil et al. (2002) from 150 to 1,410 days,
and in the study by McDowall et al. (1996) participants were at
least 180 days postinjury (the maximal time after onset was not
mentioned).

Another factor possibly related to ISL may be working memory
(WM). Deficits in verbal as well as spatial WM are common in
individuals with TBI (Dunning et al., 2016; McAllister et al.,
2006), and abnormal frontal brain activation during a WM task has
been reported (Kasahara et al., 2011). WM has been associated
primarily with the dorsolateral prefrontal cortex (DLPFC). The
facts that in healthy participants, noninvasive brain stimulation of
the DLPFC increases WM performance, as revealed in the meta-
analyses of Brunoni and Vanderhasselt (2014), and that the same
region was reported to be activated during the assessment of ISL
by the SRT (Willingham et al., 2002), points to a link between
WM and ISL. Nevertheless, this relationship is debatable (Janac-
sek & Nemeth, 2013). For example, Bo et al. (2011) found that
better ISL was related to higher verbal and visuospatial WM in
young adults, and in older adults only to verbal WM. On the
contrary, the study by Virag et al. (2015) detected a negative
correlation between verbal WM measures and ISL: namely, the
lower the verbal WM, the better the ISL. To the best of our
knowledge, the effect of WM on ISL has not yet been investigated
with individuals who have sustained TBI.

In the present study ISL was tested in individuals following TBI,
using the oculomotor activated version of the ocular SRT
(O-SRT). The O-SRT is an eye tracked variant of the SRT task,
developed by Vakil et al. (2017). The advantage of using eye
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tracking is that it enables generation of a new measure called
correct anticipation (CA), in addition to RT, which is typically
generated from this task. Eye tracking enables measurement of the
number of CAs by recording whether the eyes move toward the
next correct position during the 500-ms interval between targets
(Vakil et al., 2017). This measure reflects CA of the subsequent
spatial location directly, whereas the RT measure is an indirect
measure of CAs. Presumably, CA of the spatial location of the next
stimulus yields a faster RT. In addition to the CA measure, this
paradigm enables us to generate a “stucks” measure, namely, the
number of times the participant remains fixated on the previous
location and then moves to the next location only when the new
stimulus appears, rather than during the 500-ms delay between
stimuli.

The O-SRT test also allows measurement of RT in two ways:
first, the standard RT by key press as assessed in the manually
activated (MA) version. Second, RT based on eye movements
when using the oculomotor activated (OA) version. In the OA
version, an eye fixation on target for 100 ms replaces key pressing.
Results of the OA version and of the standard MA version yielded
similar sequence learning rates (although the OA RT was faster
overall than the MA RT; Vakil et al., 2017). Consistent with
previous findings in the literature (Ferraro et al., 1993; Vakil et al.,
2002), when the new sequence was introduced, RT in the MA
version did not revert to baseline level because of the general skill
(S-R) learned, and was carried over to the new sequence. However,
in the OA version RT returned to baseline level because it does not
involve the general skill of associating spatial location with the
corresponding key. The researchers interpreted this finding as an
indication that the OA version of the O-SRT task generates purer
sequence learning measures.

The goal of the present study was to elucidate the underlying
cognitive processes of ISL following TBI, by analyzing and inte-
grating the three oculomotor measures: RT, CA and stucks. Fur-
thermore, we were interested in investigating ISL at a relatively
early post TBI phase, and therefore limited our sample to a
maximum of one year post injury. We also aimed to minimize the
range of time after onset in order to have a more homogenous
sample, in comparison to previous SRT studies (Mutter et al.,
1994; Vakil et al., 2002) that used a longer range of time after
onset. In addition, evaluation of the impact of demographic and
clinical factors, as well as the role of WM capacity in acquisition
of ISL, will provide further information contributing to the com-
plex picture of ISL in TBI.

Method

Participants

Two groups participated in the present study: a group fol-
lowing TBI and a control group (without brain injury). A total
of 28 individuals with TBI participated in the study. Two
participants had to be excluded due to technical registration
problems (connection loss) of the eye tracker device, resulting
in a sample of three females and 23 males, with ages ranging
from 19 to 53 years (M � 31.7, SD � 11.9). Individuals with
TBI were recruited from a population of patients admitted to the
Loewenstein Rehabilitation Center (Israel), for rehabilitation
following TBI. The diagnosis of TBI was made by a physician,

based on anamnestic, clinical, and computed tomography (CT)
data. Participants included were individuals with complicated
mild, moderate, or severe TBI with maximum time after onset
of 1 year, in stable medical condition, and at least 2 weeks
beyond post traumatic amnesia. Exclusion criteria included
sustained penetrating TBI, prior sustained TBI, eye movement
disorder, visual field impairment to an extent that would not
permit task performance, history of alcohol or drug abuse, and
premorbid psychiatric or neurological diagnoses. All individu-
als with TBI had normal or corrected vision and all were
hospitalized at the time of assessment and exposed to the same
rehabilitation setting. Most participants (n � 19) of the TBI
group received medical treatment such as analgesics (n � 9),
antidepressants (n � 5), antiepileptics (n � 8), anxiolytics (n �
1), dopaminergic anamnestic medication (n � 3), neuroleptics
(n � 6), and stimulants (n � 1). The group consisted of
individuals with complicated mild (n � 3), moderate (n � 4),
and severe TBI (n � 19), estimated according to the Glasgow
Coma Scale (GCS), ranging from 3 to 15 (M � 6.7). The
individuals included with complicated mild TBI were classified
as complicated mild TBI since all had prominent brain injury as
evaluated with CT (Table 1) and clinically apparent symptoms.
The time after onset of all TBI group participants ranged from
14 to 309 days (M � 97.8 days). Causes that led to TBI included
motor vehicle accidents (n � 20) and falls from height (n � 6).
Several of the participants sustained orthopedic injuries such as
amputation of the digits (n � 1), fractures of the femur (n � 3),
ilium (n � 1), limbs (n � 3), knee (n � 1), pelvis (n � 8),
radius (n � 1), tibia (n � 3) and vertebrae (n � 2). According
to CT data, most individuals sustained a focal injury in the
frontotemporal lobes (see Table 1 for detailed information).
Due to the local clinical conventions that defined CT as the
default imaging assessment, no neuroimaging data (e.g., struc-
tural MRI, diffusion tensor imaging [DTI], etc.) suitable to
evaluate white matter damage was available. However, accord-
ing to neuropathology studies evaluating affected brain regions
in TBI, we can assume that frontotemporal damage as well as
diffuse axonal injury and other neuropathology in other brain
regions is likely to be the case in our sample (Bigler, 2007;
Mckee & Daneshvar, 2015; Stuss, 2011). Detailed demo-
graphic, clinical, and imaging (i.e., CT) information per partic-
ipant of the TBI group is presented in Table 1. The control
group consisted of 28 individuals (3 females and 25 males),
with normal or corrected vision. Two individuals participated
voluntarily, 10 participated in return for a payment of 40 NIS
(�10 USD), and 16 were undergraduate students at Bar-Ilan
University who took part in the experiment to fulfill academic
requirements. Their ages ranged from 18 to 55 years (M � 31.2,
SD � 10.7). The group’s ages, t(52) � 0.15, p � .88, as well
as their educational level, t(52) � �1.62, p � .11, did not differ
significantly. Written informed consent was obtained from all
participants. The study was approved as required by the Hel-
sinki Committee at the Loewenstein Rehabilitation Center.

Procedure

Participants completed the study procedures in a single testing
session lasting approximately 50 min. First, participants signed the
informed consent form and completed a short demographic ques-
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tionnaire. They were then tested with the OA version of the O-SRT
task, lasting approximately 20 min. Subsequently, the Digit Span and
Spatial Span subtests of the Wechsler Memory Scale (WMS-III;
Wechsler, 1997) were administered. Three participants of the TBI and
one of the control group did not take part in the Digit Span and Spatial
Span assessment.

Test Material

O-SRT

The SRT design used for this experiment was a replication of
the OA version of the O-SRT task in the study by Vakil et al.
(2017). The task was programmed in E-Prime 2.0. Eye movements
were recorded by the SMI iView 120 REDm Eye Tracker (Sen-

soMotoric Instruments, Teltow, Germany), at a sample rate of
120 Hz. Stimuli were presented on an LCD computer screen
(size 42 � 24 cm; resolution 1,600 � 900 pixels). The record-
ing device was installed beneath the screen. Participants were
seated in front of the screen, approximately 60 cm away from it.
Calibration was performed once at the beginning of every task
session, using a standard 5-point grid for both eyes.

Stimuli

Stimuli consisted of five slides (Figure 1A), each with a reso-
lution of 1,400 � 900 pixels. Each stimulus included four white
squares arranged in a diamond shape on a gray background. Four
slides contained a black dot (indicating the target) in one of the
four white squares. One slide, which was used to measure antici-

Table 1
Traumatic Brain Injury Group: Demographic, Clinical, and Imaging Data

P Sex Age Edu GCS TAO Location and pathology of brain injury (CT) Orthopedic injuries Medication Cause

1 M 53 13 3 156 Lt temporal epidural hematoma, Bi frontal
and Lt temporal contusions, SAH

AD mv

2 M 51 12 3 189 Rt fronto-parietal contusion amputation of Rt digits AD, AE, St mv
3 M 43 14 14 91 Rt frontal contusion, Lt SAH, small SDH multiple fractures of Rt

upper limp and
ilium

NOAn fall

4 F 46 13 3 81 Bi frontal, Lt temporal contusion mv
5 M 48 15 7 20 Lt frontal and temporal contusions fall
6 M 29 15 8 41 DAI (Rt frontal, Lt parietal) Rt knee injury mv
7 M 19 12 3 66 Lt occipital infarction AD, OAn mv
8 F 38 17 6 97 Lt cerebellar and Lt occipital infarction mv
9 M 21 12 6 78 no pathology on early CT fractures; pelvis,

femur, lumbar
vertebrae

AE, N, AX,
OAn

mv

10 M 22 10 6 309 Bi frontal contusions, Lt thalamic
hemorrhage

fracture left radius D mv

11 M 21 12 8 109 no pathology on late CT fracture pelvis NOAn fall
12 M 28 12 3 108 DAI (Grade III—hemispheres, focal lesions

in corpus callosum, midbrain)
fracture knee AD, N mv

13 M 46 10 14 29 Bi prefrontal and Lt temporal contusions,
SAH

AE, N, NOAn fall

14 M 27 14 10 216 DAI fracture pelvis AE, NOAn mv
15 M 47 12 10 112 Rt frontal SAH, Bi SDH fractures; pelvis,

vertebrae
AD mv

16 M 20 10 4 51 DAI fracture Rt femur AE, N mv
17 M 19 12 3 33 fracture of parietal bone, small tentorial

SDH, no pathology on late CT
mv

18 F 23 12 6 235 Lt temporal contusion, Lt craniectomy fracture Lt tibia AE mv
19 M 21 12 15 14 Lt frontal contusion, SAH fracture Rt tibia AE, OAn mv
20 M 30 15 8 69 Bi frontal contusions, Bi SDH on early CT,

large Lt frontal injury on late CT.
N mv

21 M 22 10 3 129 Lt temporal hypodense area, Lt basal
ganglia lacunar lesion

fractures; pelvis, limbs NOAn mv

22 M 20 12 10 52 Rt parietal hypodense area N, D mv
23 M 47 13 5 49 Bi small frontal and Lt parietal contusions fractures; pelvis, limbs OAn fall
24 M 25 12 3 50 Bi frontal contusions, SAH fall
25 M 35 17 9 26 Bi prefrontal contusions, suspected temporal

poles involvement
mv

26 M 23 12 3 135 Bi frontal contusions, SAH, Lt SDH on
early CT, enlargement of Rt lateral
ventricle on late CT

fractures; pelvis, Rt
tibia, femur

D mv

Note. In this table age was rounded off to full year of age; in analyses the exact age was used (decimal). P � participant; Edu � years of education; CT �
computed tomography; GCS � Glasgow Coma Scale; TAO � time after onset in days; Bi � bilateral; DAI � diffuse axonal injury; Lt � left; Rt � right;
SAH � subarachnoid hemorrhage; SDH � subdural hemorrhage. Medication categories: AD � antidepressant; AE � antiepileptics; Ax � anxiolytics; D �
dopaminergic; NOAn � nonopioid analgesics; N � neuroleptics; OAn � opioid analgesics; St � stimulants. Cause: mv � motor-vehicle accident; fall �
fall from height.
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pation, contained only the four white squares, without a black dot
in any of the squares. The size of each square was 6 � 6 cm and
the diameter of the dot was 1.5 � 1.5 cm.

O-SRT Procedure

Computerized target slides were presented with a black dot (the
target stimulus) that appeared in one of four white squares ar-
ranged in a diamond shape (see Figure 1A). Before each target

slide, a blank slide with four empty squares was shown for 500 ms
(i.e., the anticipation slide). Each block consisted of a 12-element
sequence repeated nine times (see Figure 1B), which resulted in
108 anticipation and 108 target slides. The sequence in each block
began from a different element of the sequence, that is, a different
starting point. No first-order predictive information was provided
in the sequence (i.e., each location was preceded by the same
location only once). Each element in the sequence was matched

Figure 1
Illustration of the Ocular Serial Reaction Time (O-SRT) Task

Note. (A) An example of a target slide. This slide was activated by 100 ms of fixation on the white square, or at the latest after 1,000 ms if no fixation
had occurred. (B) Illustration of one of the sequences used in the experiment design of the O-SRT. A sequence consisting of 12 elements (� positions)
was repeated nine times per Block. At the start and in between the target slides, an empty slide containing only the squares was presented for 500 ms in
order to measure correct anticipations (CA) and stucks. The same sequence (A) had been displayed in Blocks 1–6, followed by an interference block 7
carrying a different sequence (B) and terminated by the recovery block 8 with the original sequence (A).
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with one of the four squares: 1, 2, 3, and 4 to correspond with
down, left, right, and up, respectively. Two sequences were used in
the O-SRT which were adopted from Gabriel et al. (2013): Se-
quence A (3–4–2–3–1–2–1–4–3–2–4–1; the original sequence)
and Sequence B (3–4–1–2–4–3–1–4–2–1–3–2; the interference
sequence). Figure 1B presents an illustration of Sequence A.

Participants were instructed to look as quickly as possible at the
target dot when it appeared in one of the four squares arranged in
a diamond shape. For the purpose of measuring anticipation of the
subsequent target location, a blank slide (i.e., the anticipation
slide) was presented for 500 ms in between the target slides.
Importantly, participants were not aware that a blank slide ap-
peared, since it is perceived as a continuous flow from one to the
next target slide. The target slides were oculomotor activated,
meaning that when the square with the target was fixated for a
minimum of 100 ms, the blank slide was displayed, followed by
the next target slide.

The O-SRT task was constructed out of a total of eight blocks,
divided into three phases. First, the learning phase—the presenta-
tion of six Blocks (1–6) containing the original Sequence A.
Second, the interference phase—the presentation of one block with
the interference Sequence B (Block 7). Third, the recovery from
interference phase—the presentation of one block with the original
Sequence A (Block 8). After each block, a 1-min break was given
before starting the next block. Participants received no prior in-
formation about the nature of the task (i.e., that the dots appear in
a sequential order) nor the number of blocks.

Data Analysis

Eye movement data was registered using iView (SensoMotoric
Instruments, Teltow, Germany), and BeGaze (SensoMotoric In-
struments, Teltow, Germany), was used to generate eye-tracking
parameters. Three dependent measures were used: speed (RT to
target), number of CAs and number of stucks.

Reaction Time (RT)

Median RT was calculated for each 12-item sequence (i.e., the
median of the 12 trials that constituted 1 repetition of a sequence).
Then, the mean of medians of RT per block (i.e., 9 sequences of 12
items each; 108 trials) was analyzed.

Number of CAs

Number of CAs was evaluated by tracking the transition of the
participant’s gaze to the correct subsequent position during the
blank slide between target slides presentation. We used the func-
tion area of interest (AOI) in the BeGaze program and enlarged the
squares into triangles, so that four triangles covered the four
squares and the center point of the screen Figure 2. All trials in
which participants fixated at least once on the AOI of the correct
subsequent sequence location (where the next target was going to
appear) were classified as CAs. The number of CAs per block was
summarized (i.e., the maximum possible number per Block is
108). This established the CA score for each block for all partic-
ipants.

Analysis of ISL

Performance of ISL using the RT and CA measures was ana-
lyzed in the following three phases:

Learning. A mixed-design analysis of variance (ANOVA;
2 � 6) was used to analyze the effects of the between-subjects
condition factor of Group (TBI and controls) and the within-
subjects factor of Learning (Blocks 1–6).

Interference. A mixed-design ANOVA (2 � 2) was used to
explore the effect of the between-subjects condition factor of
Group (TBI and controls) and the within-subjects factor of Inter-
ference (Block 6 vs. Block 7).

Recovery From Interference. A mixed-design ANOVA (2 �
2) was used to explore the effect of the between-subjects condition
factor of Group (TBI and controls) and the within-subjects factor
of Recovery from Interference (Block 7 vs. Block 8).

ISL Scores

For each participant, scores describing the extent of ISL, for the
learning as well as the interference phases, for both the RT and CA
measures, were computed as follows:

1. ISL Learning score: Block 6 was subtracted from Block
1 for the RT measures and vice versa, Block 1 was
subtracted from Block 6 for the CA measures, thereby
resulting in RT and CA learning scores.

2. ISL Interference score: Block 7 was subtracted from
Block 6 for the RT measures and vice versa, Block 7 was
subtracted from Block 6 for the CA measures, which
resulted in RT interference and CA interference scores.

For all computed score accounts, the higher the score the stron-
ger the learning or interference effect. The ISL scores were viewed

Figure 2
Areas of Interest (AOIs) Used for Calculating Correct Antici-
pations

Note. Each triangle was considered the AOI for the square that was
positioned inside of it.
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as indicators of how well the sequence was learned. In order to
evaluate possible influences of clinical, demographic and WM
measures on ISL, these ISL scores were used to perform bivariate
Pearson correlation analyses.

Number of Stucks

Stucks were evaluated by tracking the participant’s gaze which
remained at the previously presented target position during the
blank slide between target slides presentation. The procedure for
computing stucks was similar to that of CAs. The same AOIs (i.e.,
four triangles covering the four squares as illustrated in Figure 2)
were used in order to identify the trials where participants were
stuck. Then, the sum of stucks was calculated for each block
separately. We were primarily interested in the number of stucks
during the learning phase, and therefore computed the average
stucks of Blocks 1–6. We compared this measure between the
groups by conducting an independent-samples t test.

Digit and Spatial Span

We assessed verbal and spatial WM capacity by applying the
Forward and Backward Digit and Spatial Span subtests of the
WMS-III (Wechsler, 1997). The total score (sum of Forward and
Backward Span) was used in both tasks to perform independent-
samples t tests to compare the groups, as well as to perform
bivariate Pearson correlation analyses with the RT and CA ISL
scores.

Results

Reaction Time

The mean of the medians of RT as a function of Blocks 1 to 8
of the O-SRT for both groups is presented in Figure 3.

Learning

A mixed ANOVA with a Greenhouse-Geisser correction re-
vealed that there was a significant reduction in RT over Blocks
1–6, F(3.96, 206.07) � 8.37, p � .001, �p

2 � .14. The main effect
of Group, F(1, 52) � 8.04, p � .01, �p

2 � .13, as well as the
Group � Learning interaction, F(3.96, 206.07) � 2.42, p � .05,
�p

2 � .05, reached significance as well. To understand the source of
the interaction, we performed follow up analyses (i.e., separate
repeated measures ANOVA with a Greenhouse-Geisser correction
for each group), which demonstrated that the Learning effect was
significant only in the control F(3.57, 96.27) � 9.4, p � .001, �p

2 �
.26, but not in the TBI group F(2.82, 70.73) � 1.9, p � .14, �p

2 �
.07). These results indicate that only the control group significantly
reduced RTs during the learning phase. Additionally, the TBI
group performed generally slower than the control group (see
Figure 3).

Interference

Interference main effect, F(1, 52) � 15.24, p � .001, �p
2 � .23,

interaction of Group and Interference, F(1, 52) � 9.06, p � .01,
�p

2 � .15, and Group effect, F(1, 52) � 5.78, p � .05, �p
2 � .10

were all significant. Follow-up analyses revealed that only the
control group showed a significant Interference effect (TBI: F(1,

25) � 0.38, p � .54, �p
2 � .02, controls: F(1, 27) � 25.17, p �

.001, �p
2 � .48). These results indicate that interference only

affected the control group, which demonstrated higher RTs when
a different sequence was presented (see Figure 3).

Recovery From Interference

All three effects reached significance: Recovery from Interfer-
ence main effect, F(1, 52) � 17.31, p � .001, �p

2 � .25, Group �
Recovery From Interference interaction, F(1, 52) � 10.39, p �
.01, �p

2 � .17 and Group main effect, F(1, 52) � 6.80, p � .05,
�p

2 � .12. The follow- up analyses revealed that the main effect for
Recovery from Interference stemmed only from the control group
(F(1, 27) � 24.27, p � .001, �p

2 � .48). The TBI group did not
show a significant Recovery from Interference effect, F(1, 25) �
0.50, p � .49, �p

2 � .02. As can be seen in Figure 3, in contrast to
the TBI group, RTs of the control group were remarkably reduced
when the original sequence had been reintroduced.

Number of CAs

The average CA as a function of blocks 1 to 8 of the O-SRT for
both groups is presented in Figure 4.

Learning

The Learning main effect of a mixed ANOVA with a
Greenhouse-Geisser correction, F(3.81, 198.12) � 9.73, p � .001,
�p

2 � .16, and effect for Group, F(1, 52) � 9.87, p � .01, �p
2 � .16

were significant. The Group � Learning interaction did not reach
significance, F(3.81, 198.12) � .41, p � .79, �p

2 � .01. Overall,
these results (see Figure 4) indicate that as the session progressed,
both groups showed a similar increase in the number of CAs,
whereas the overall number of CAs was significantly lower in the
TBI group.

Figure 3
Reaction Time

Note. The mean of the median reaction time (RT; and SE) of the traumatic
brain injury (TBI) and control group is displayed from Blocks 1–8. In the
learning phase (L) Sequence A was presented from Block 1–Block 6. The
seventh Block contained the different Sequence B (I � interference
phase) and finally in Block 8 the original Sequence A was presented again
(R � recovery from interference phase). RT was measured as the time
starting from the onset of the target slide until the first fixation on the
square containing the dot on the target slide.
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Interference

All three effects were significant: the Interference main effect,
F(1, 52) � 8.92, p � .01, �p

2 � .15, Group � Interference
interaction F(1, 52) � 5.21, p � .05, �p

2 � .10, and Group main
effect F(1, 52) � 5.69, p � .05, �p

2 � .10. Follow-up analyses (i.e.,
separate repeated measures ANOVA for each group) revealed that
the Interference effect was driven by the performance of the
control group, (F(1, 27) � 11.74, p � .01, �p

2 � .30). The
Interference effect of the TBI group was not significant, F(1,
25) � .32, p � .58, �p

2 � .01. This outcome implies that only the
control group was disturbed significantly by the different sequence
that led to the reduced number of CAs (see Figure 4).

Recovery From Interference

All three effects were significant: the Recovery from Interfer-
ence main effect, F(1, 52) � 11.09, p � .01, �p

2 � .18, Group �
Recovery from Interference interaction, F(1, 52) � 5.91, p � .05,
�p

2 � .10, and Group main effect, F(1, 52) � 5.74, p � .05, �p
2 �

.10. Follow-up analyses (i.e., separate repeated measures ANOVA
for each group) revealed that the Recovery from Interference effect
was only significant in the control group, F(1, 27) � 12.91, p �
.01, �p

2 � .32. The TBI group did not reach a significant effect,
F(1, 25) � .61, p � .44, �p

2 � .02. Thus, as illustrated in Figure 4,
when presenting the original sequence again, only controls dem-
onstrated a significant increase in CAs.

Number of Stucks

The average number of stucks from Block 1–Block 6 differed
significantly between the groups, t(52) � 3.284, p � .01. The TBI
group was stuck more often at the same location (M � 46.63,
SD � 19.63), compared to the controls (M � 29.49, SD � 18.72).

Percentage of CAs

The higher numbers of stucks found in the TBI group has an
implication for the CA measure. That is because a higher number

of stucks results in a lower number of available trials in which
participants could make correct or incorrect anticipations. We were
therefore interested in evaluating performance of CAs in propor-
tion to incorrect anticipations (i.e., eye fixation on a triangle other
than the preceding or subsequent target), regardless of the number
of stucks. Thus, we calculated the percentage of CAs out of the
total number of correct and incorrect anticipated trials. This estab-
lished the percentage of CAs score (Percentage CA) for each block
for all participants. In order to compare the groups, we computed
the average of the percentage CA in the learning phase and
conducted an independent-samples t test. This analysis revealed
that groups had a similar average percentage CA (TBI: M � 46.04,
SD � 5.88, control group: M � 48.40, SD � 5.86) and did not
differ significantly, t(52) � �1.473, p � .15.

Digit and Spatial Span

Digit Span differed significantly between groups, t(48) � �6.02,
p � .001. The control group reached a higher total Digit Span score
(M � 18.07, SD � 3.75) than the group with TBI (M � 12.18, SD �
2.92). Although the control group achieved higher results in the total
Spatial Span (M � 16.44, SD � 2.85) than the group with TBI (M �
14.70, SD � 3.20), this difference did not reach significance on the
Bonferroni corrected significance level (p � .025), t(48) � �2.05,
p � .046.

Correlation Analyses

Bivariate Pearson correlation analyses revealed no significant
(p � .05) correlations between demographic (i.e., age, education)
and ISL scores of RT and CA in both groups. Furthermore, these
measures also did not correlate with the clinical factors (i.e., GCS,
time after onset) in the TBI group. However, and only in the
control group, we found a significant correlation between the
Spatial Span and the ISL scores of CA and RT. There were no
significant correlations between Digit Span and the ISL scores.
The Pearson product–moment correlation coefficients of these
analyses for both groups are presented in Table 2. Since literature
is inconsistent regarding the contribution of WM to ISL, and to the
best of our knowledge, the present study is the first to test this
relation in individuals following TBI, we followed an exploratory
approach. Therefore, we corrected for multiple comparisons of the
number of correlation analyses conducted per study group that
resulted in a Bonferroni corrected threshold level of p � .006.
Only the correlation between CA Learning score and Spatial Span
(r(27) � .589, p � .001) of the control group reached this level of
significance.

Discussion

The present study investigated ISL in individuals that had sus-
tained TBI at a maximum of 1 year postinjury, using the OA
version of the O-SRT task. Compared to the original MA version
of the SRT that measures primarily manual RT, aside from OA
RT, the O-SRT provides additional measures such as number of
CAs and number of stucks. Whereas RT is considered to be an
indirect measure of ISL, the CA measure allows direct assessment
of whether a sequence has been learned or not, and to what extent.
Furthermore, the OA measure of RT is itself a purer measure than

Figure 4
Correct Anticipations

Note. The average number (and SE) of correct anticipations (CA) of the
ocular serial reaction time (O-SRT) task for the TBI and the control
group is displayed from Blocks 1–8. In the learning phase (L) Sequence
A was presented from Block 1–Block 6. The seventh Block contained
the different Sequence B (I � interference phase), and finally in Block
8 the original Sequence A was presented again (R � recovery from
interference phase).
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the MA measure of RT, because it does not involve the general
skill learning of mapping the spatial location of the screen stimulus
to the corresponding key (S-R). All three measures such as OA
RT, CA, and stucks provide important information allowing char-
acterization of different ISL aspects.

Generally, the TBI group performed slower than controls as
expressed by the group main effect of the RT measures, which is
consistent with a slower processing speed typically associated with
TBI (e.g., Johansson et al., 2009). The aim of the present study was
to investigate the learning characteristics of ISL in individuals with
TBI. Therefore, our focus is on the learning rate measures which
are independent of the speed of processing. The comparison be-
tween the multiple measures generated by the O-SRT task pro-
vided us with some insights into the underlying cognitive pro-
cesses involved in the acquisition phase of ISL in individuals with
TBI versus controls. Consistent with previous findings (Vakil et
al., 2017), ISL in controls was expressed in RT and CA measures.
In contrast, the TBI group showed impaired ISL in all three phases
(i.e., learning, interference and recovery from interference) com-
pared to controls using the RT measure. The performance accord-
ing to the CA measure revealed a slightly different picture. Al-
though the TBI group reached a significantly lower number of CAs
in the learning phase, the increase in CA was significant in both
groups. However, the introduction of the interference sequence
had no significant impact on the TBI group (indicating impaired
ISL), as compared to the controls who were significantly disturbed
by it. Similarly, in the recovering from interference phase, only the
control group recovered significantly and was able to increase the
CAs. Thus, the CA analyses revealed that the TBI group showed
impairment, expressed primarily by the absent Interference effect
upon presentation of a different sequence. Yet, at the same time it
indicates that their learning rate was similar to that of controls.

In order to gain a better understanding of the divergent outcome
of the RT and CA analyses, we looked closer at the stucks measure
and its relation to the RT and CA measures. We observed the
following pattern, which we view as a key finding for understand-
ing the ISL process in individuals with TBI compared to that of
controls. The fact that the TBI group had a remarkably higher
number of stucks has a direct implication on the total number of

their possible CAs. In other words, the higher the stucks rate, the
lower the possible number of CAs, because the total number of
possible CAs is finite (i.e., a maximal 108 possible CAs per
Block). Therefore, we hypothesized that the TBI group would
perform proportionally at a CA rate during learning similar to that
of controls. Using the percentage measure of CAs (Percentage CA)
this analysis confirmed our assumption. Thus, in absolute terms,
the TBI group had a significantly lower CA rate, but when cor-
recting for the number of stucks and looking at proportional CA
relative to total anticipations (i.e., including correct and incorrect
anticipations, but excluding stucks), the difference between the
groups disappeared. Consequently, the tendency to remain in the
old stuck position drives the difference in CA between the groups.

By integrating all these findings, the picture emerging is that
individuals with TBI tend to be reluctant to make an anticipa-
tion move toward the next possible location of the subsequent
appearing stimulus during the time delay of 500 ms in between
the preceding and subsequent appearing stimulus. This behavior
is expressed in a higher rate of stucks. This could be due to their
lack of initiative associated with TBI (Arnould et al., 2016;
Godfrey et al., 2003; Oddy et al., 2008; Prigatano, 1992;
Vallat-Azouvi et al., 2018) and frontal lobe injury in TBI
(Stuss, 2011; Zappalà et al., 2012), or lack of confidence in
knowing the correct location, or both. The tendency to remain
stuck more often at the “old” position, together with the lower
processing speed as mentioned above, may also explain the
higher RT as compared to controls. Unlike controls, participants
with TBI performed a move toward the next location that would
have shortened their RT less frequently. Instead they waited for
the stimulus to appear, and only then moved toward it. The
higher stucks rate in the TBI group also had implications for
their CA rate, as explained above. Their hesitation expressed in
a higher number of stucks suggests that individuals with TBI
have a conservative response bias compared to controls. This
means that they make an anticipatory move when they feel quite
confident about the accuracy of their move. This leads to the
finding that they did not differ from controls on the Percentage
CA rate. Nevertheless, the fact that they were not significantly
disturbed by the interference sequence clearly reflects their
impairment in ISL.

In sum, by taking into account all three measures used in the
present study, namely RT, CA, and number of stucks, we
concluded that the TBI group tested in our study was impaired
in ISL, but not to such an extent as the RT analyses alone would
imply. We propose that the lack of initiative associated with
frontal lobe injuries in TBI (Stuss, 2011; Zappalà et al., 2012)
and/or the conservative response prevalent in TBI (Campbell et
al., 1990; Paniak et al., 1989; Whyte et al., 1995) resulted in a
higher stucks rate, which was the main factor leading to im-
paired ISL in the TBI group. Nevertheless, we cannot exclude
the possibility that affected brain regions other than frontal
lobes, such as basal ganglia or fronto-striatal connections, were
related to this behavior. These regions are also frequently
impaired following TBI (Mckee & Daneshvar, 2015) and were
previously linked with lack of initiative (Moretti & Signori,
2016; Palmisano et al., 2020). No imaging data (e.g., MRI, DTI)
suitable to test this assumption was available, which together
with the fact that our sample was characterized by rather
heterogenic brain injuries (i.e., in terms of affected brain re-

Table 2
Pearson Correlation Matrix of Working Memory Capacity and
Implicit Sequence Learning Scores

ISL scores

Learning Interference

Group subtests RT CA RT CA

TBI
Digit Span �.073 .094 .089 .062
Spatial Span �.115 �.014 �.134 .017

Controls
Digit Span �.033 �.060 .107 .296
Spatial Span .472� .589��† .456� .412�

Note. TBI � traumatic brain injury; RT � reaction time; CA � number
of correct anticipations; RT Learning � RT Block 1 minus Block 6; RT
Interference � RT Block 7 minus Block 6; CA Learning � CA Block 6
minus Block 1; CA Interference � CA Block 6 minus Block 7.
† Reaching Bonferroni corrected threshold level of p � .006. � p �
.05. �� p � .01, two-tailed.
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gions and brain pathology) limits the results of our study.
However, based on the literature (Bigler, 2007; Stuss, 2011) we
assume that most participants sustained frontal lobe injuries,
which we see as a key impairment in association with lack of
initiative and/or conservative response bias, as being responsi-
ble for the observed deficits of ISL in TBI.

We were further interested in learning whether clinical (GCS,
time after onset) or demographic variables such as age and
education have an impact on ISL. Consistent with the results of
Vakil et al. (2002), ISL (i.e., ISL scores of RT and CA) was not
associated with clinical measures such as GCS or time after
onset. Furthermore, a study assessing explicit sequence learn-
ing, did not detect any relation between sequence learning and
clinical measures (Korman et al., 2018). Education was not
related to ISL in either the control or the TBI group, and in
contrast to the findings of Lukács & Kemény (2015), we did not
observe a correlation between age and ISL scores. In their
study, the effect of age on ISL was systematically tested, and
the authors reported a peak that occurred between ages 18 –35
and then started to decline. We do not exclude the possibility
that age affected ISL in our samples, as the group sizes may
have been too small to detect it. This, however, was also not the
focus of our study. Based on the results of our age-matched
samples, we do assume that if age affected ISL, it occurred in
both groups in a similar way.

WM is another domain that may influence ISL. Since indi-
viduals with TBI have been frequently reported to be impaired
in WM (Dunning et al., 2016; McAllister et al., 2006), we
assessed the Digit and Spatial Span of the WMS-III (Wechsler,
1997). Our analysis revealed that after correction for multiple
comparisons, verbal but not spatial WM capacity was signifi-
cantly impaired in the TBI group. This pattern has been ob-
served similarly in previous studies (Kraus et al., 2010; Little et
al., 2014; Vallat-Azouvi et al., 2009; Vallat-Azouvi et al.,
2007). At the same time, we would like to note that by using a
larger sample size, we might also have detected a significant
difference in spatial WM capacity. However, considering the
very low p value of the Digit Span group comparison, we
suggest that our tested TBI group was predominantly impaired
in verbal rather than spatial WM capacity. Furthermore, we
were interested in examining the impact of WM capacity on
ISL. We found that Spatial Span, after correcting for multiple
comparisons, was positively correlated with the CA Learning
score in the control group. This finding may be related to the
spatial arrangement of the target dots in our O-SRT version.
The study by Robertson et al. (2001) that compared learning on
a spatial versus nonspatial cued response sequence task by
applying repetitive inhibitory transcranial magnetic stimulation
to the DLPFC, does point to this link. Since learning was
disrupted only during the spatial cued response task, the authors
concluded that previously reported activation of the DLPFC
during ISL is specifically related to the processing of spatial
cues in WM. Interestingly, although spatial WM performance
was not significantly impaired in our TBI group, we did not
detect a relation between Spatial Span and the ISL scores. We
relate this pattern to the impact of brain damage to frontal
structures which results in failure of the “implementation of
strategic approach and conceptual elaboration of information”
(p. 997) as described by Vakil (2005). In other words, although

the TBI group had sufficient spatial WM ability, individuals
with TBI were not able to use this ability during performance on
the O-SRT.

In previous publications, ISL was found to be affected by
medications in a variety of clinical populations, either by an
enhanced, decreased, or no effect on ISL. Dopaminergic treat-
ment (i.e., levodopa) rather enhanced ISL (Beigi et al., 2016;
Rösser et al., 2008), neuroleptics, depending on the class type
led to enhanced or reduced ISL (Kumari et al., 2015) and
antidepressants seemed not to affect ISL (Pedersen et al., 2009).
Most of the participants in our TBI group received an individ-
ually catered medication treatment plan, and therefore the med-
ication profile in our TBI group is rather heterogenic. Thus,
given the findings in the literature and considering the hetero-
geneity of the medication treatment in our TBI sample, we
assume that on the group level possible medication effects on
ISL were counterbalanced, but we cannot exclude that medica-
tions did affect their ISL on an individual level.

In conclusion, our study demonstrates the benefit of using
eye tracking in the assessment of ISL, as it can potentially
unveil learning strategies and/or cognitive processes which
remain hidden when using standard behavioral assessments.
Using the O-SRT task enabled the generation of new measures
in addition to the RT measure used in the standard SRT task. It
is evident from this study that RT provides only a partial picture
of the sequence learning process. This could also explain the
inconsistent findings in the literature, because it seems that
individuals post-TBI are capable of learning to some extent
(i.e., as expressed by the significant learning effect of CAs), but
this is not necessarily reflected in the RT measure. Thus, our
results point to a significant ISL impairment in individuals with
TBI, yet more research is needed to understand whether other
factors, for example lengthening the learning phase, may lead to
better ISL performance. In view of the fact that elements of
procedural learning are frequently implemented in physical,
behavioral, and cognitive rehabilitation settings, it is highly
relevant to study procedural learning abilities in TBI. Rehabil-
itation settings cater to the learning of new skills in order to
cope with TBI-related difficulties during activities of daily
living (Skidmore, 2015). Our study provides novel insights into
ISL in TBI which may be implemented in rehabilitation. The
finding that individuals post TBI were more stuck during learn-
ing of a sequential procedure probably because of their lack of
initiative or hesitation due to feelings of insecurity, eventually
leading to impaired learning, may be a critical point to be
addressed in therapeutic settings. In addition, such settings may
also consider our finding that despite relatively preserved spa-
tial WM, individuals with TBI may not be able to apply this
ability to support their skill learning. Future research is needed
to replicate our findings and to better understand the influence
of other factors, such as the length of the learning course. Our
finding that the TBI group expressed a learning effect of CAs,
may also imply that individuals with TBI are slower in acquir-
ing the sequence and do need more repetitions in order to learn.
At the same time, exposing individuals with TBI to a longer
learning phase may result in fatigue effects (Johansson et al.,
2009). Therefore, a possible approach to study the influence of
the length of the learning course may be to spread the learning
over several sessions. Furthermore, other aspects worth study-
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ing are gender effects, recently reported to play a critical role in
ISL of male and female veterans who had sustained TBI (Waltz-
man et al., 2017). Finally, long-term effects of TBI and the
influence of targeted interventions on ISL, are additional rele-
vant questions to be investigated, since their outcome may be
highly important in terms of being implemented in clinical
settings and/or daily routines of individuals post TBI.
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